College of Engineering
Engineering Mechanics Static

Chapter One

1. Resultant Force

Experimental evidence shows that two forces P and Q acting on a particle A can be replaced by a single force R which has the same effect on the particle. This force is called the resultant of the forces P and Q

1.2 Parallelogram Law and Triangle Law

The resultant of the forces \mathbf{P} and \mathbf{Q} and can be obtained, as shown in Fig., by constructing a parallelogram, using \mathbf{P} and \mathbf{Q} as two adjacent sides of the parallelogram. The diagonal that passes through A represents the resultant. This method for finding the resultant is known as the parallelogram law for the addition of two forces.

1.2.1 Sines and Cosines Law

Because of the geometric nature of the parallelogram law and the triangle law, vector addition can be accomplished graphically. A second technique is to determine the relationships between the various magnitudes and angles analytically by applying the laws of sines and cosines to a sketch of the parallelogram

Mustansiriyah University
Electrical Engineering Department
Dr. Salah M. Mahdi

College of Engineering

Engineering Mechanics
Static

	Law of sines	$\frac{a}{\sin \alpha}=\frac{b}{\sin \beta}=\frac{c}{\sin \gamma}$
	Law of cosines	$\begin{aligned} & a^{2}=b^{2}+c^{2}-2 b c \cos \alpha \\ & b^{2}=c^{2}+a^{2}-2 c a \cos \beta \\ & c^{2}=a^{2}+b^{2}-2 a b \cos \gamma \end{aligned}$

Example 1. The two forces \mathbf{P} and \mathbf{Q} act on a bolt A. Determine their resultant.

Solution:

Mustansiriyah University Electrical Engineering Department Dr. Salah M. Mahdi

College of Engineering
Engineering Mechanics Static

Example 2: The vertical force P of magnitude 100 kN is applied to the frame shown in Fig. Resolve P into components that are parallel to the members AB and AC of the truss.

$$
\frac{100}{\sin 35^{\circ}}=\frac{P_{A B}}{\sin 35^{\circ}}=\frac{P_{A C}}{\sin 110^{\circ}}
$$

which yields for the magnitudes of the components

$$
P_{A B}=100.0 \mathrm{kN} \quad P_{B C}=163.8 \mathrm{kN}
$$

Example 3: Resolve the horizontal $600-\mathrm{lb}$ force in Fig. 2-12a into components acting along the u and v axes and determine the magnitudes of these components.

(c)

College of Engineering
Engineering Mechanics Static

Example 4:

It is required that the resultant force acting on the eyebolt in Fig. 2-14a be directed along the positive x axis and that \mathbf{F}_{2} have a minimum magnitude. Determine this magnitude, the angle θ, and the corresponding resultant force.

Fig. 2-14

SOLUTION

The triangle rule for $\mathbf{F}_{R}=\mathbf{F}_{1}+\mathbf{F}_{2}$ is shown in Fig. 2-14b. Since the magnitudes (lengths) of \mathbf{F}_{R} and \mathbf{F}_{2} are not specified, then \mathbf{F}_{2} can actually be any vector that has its head touching the line of action of \mathbf{F}_{R}, Fig. 2-14c. However, as shown, the magnitude of \mathbf{F}_{2} is a minimum or the shortest length when its line of action is perpendicular to the line of action of \mathbf{F}_{R}, that is, when

$$
\theta=90^{\circ}
$$

Since the vector addition now forms a right triangle, the two unknown magnitudes can be obtained by trigonometry.

$$
\begin{aligned}
& F_{R}=(800 \mathrm{~N}) \cos 60^{\circ}=400 \mathrm{~N} \\
& F_{2}=(800 \mathrm{~N}) \sin 60^{\circ}=693 \mathrm{~N}
\end{aligned}
$$

College of Engineering
Engineering Mechanics Static

1.3 Rectangular Component of a Force

In many problems it will be found desirable to resolve a force into two components which are perpendicular to each other. In Fig., the force \mathbf{F} has been resolved into a component $\mathbf{F} x$ along the x axis and a component $\mathbf{F} y$ along the y axis. The parallelogram drawn to obtain the two components is a rectangle, and $\mathbf{F} x$ and $\mathbf{F} y$ are called rectangular components.

$$
F_{x}=F \cos \theta \quad F_{y}=F \sin \theta
$$

EXAMPLE 1. A force of 800 N is exerted on a bolt A as shown in Fig. $2.22 a$. Determine the horizontal and vertical components of the force. Addition of Forces By Summing X and Y Components.

Solution:

(a)

(b)

Fig. 2.22

$$
\begin{aligned}
& F_{x}=-F \cos \alpha=-(800 \mathrm{~N}) \cos 35^{\circ}=-655 \mathrm{~N} \\
& F_{y}=+F \sin \alpha=+(800 \mathrm{~N}) \sin 35^{\circ}=+459 \mathrm{~N}
\end{aligned}
$$

College of Engineering
Engineering Mechanics
Static

1.3.1 Addition of Forces By Summing X and Y Components

It was seen in Sec. 2.2 that forces should be added according to the parallelogram law. From this law, two other methods, more readily applicable to the graphical solution of problems, were derived in Secs. 2.4 and 2.5: the triangle rule for the addition of two forces and the polygon rule for the addition of three or more forces. It was also seen that the force triangle used to define the resultant of two forces could be used to obtain a trigonometric solution. When three or more forces are to be added, no practical trigonometric solution can be obtained from the force polygon which defines the resultant of the forces. In this case, an analytic solution of the problem can be obtained by resolving each force into two rectangular components. Consider, for instance, three forces \mathbf{P}, \mathbf{Q} ,and \mathbf{S} acting on a particle A (Fig. $2.25 a$). Their resultant \mathbf{R} is defined by the relation

(a)
$R_{x}=\sum F_{x}$
$R_{y}=\sum F_{y}$
$R=\sqrt{R_{x}{ }^{2}+R_{y}{ }^{2}}$
$\tan \theta=\frac{R_{y}}{R_{x}} \quad ; \quad \theta=\tan ^{-1} \frac{R_{y}}{R_{x}}$

(d)

Fig. 2.25

Mustansiriyah University
Electrical Engineering Department
Dr. Salah M. Mahdi

College of Engineering
Engineering Mechanics Static

Example 1: Determine the magnitude of the resultant force and its direction, measured x axis counterclockwise form the positive.

$$
\begin{aligned}
& \stackrel{+}{\rightarrow} F_{R_{1}}=\Sigma F_{x} ; \quad F_{R_{1}}=\frac{4}{5}(850)-625 \sin 30^{\circ}-750 \sin 45^{\circ}=-162.8 \mathrm{~N} \quad F_{3}=750 \mathrm{~N} \\
& +\uparrow F_{R,}=\Sigma F_{y} ; \quad F_{R,}=-\frac{3}{5}(850)-625 \cos 30^{\circ}+750 \cos 45^{\circ}=-520.9 \mathrm{~N} \\
& F_{R}=\sqrt{(-162.8)^{2}+(-520.9)^{2}}=546 \mathrm{~N} \quad \text { Ans } \\
& \phi=\tan ^{-1}\left[\frac{-520.9}{-162.8}\right]=72.64^{\circ} \\
& \theta=180^{\circ}+72.64^{\circ}=253^{\circ}
\end{aligned}
$$

Example 2: Tree forces act on the bracket. Determine the magnitude and direction $\boldsymbol{\theta}$ of $\mathbf{F}_{\mathbf{1}}$, so that the resultant force is directed along the positive \mathbf{x} axis and has a magnitude of $\mathbf{1} \mathbf{k N}$.
$\stackrel{+}{\rightarrow} F_{h_{1}}=\Sigma F_{x} ; \quad 1000 \cos 30^{\circ}=200+450 \cos 45^{\circ}+F_{1} \cos \left(\theta+30^{\circ}\right)$
$+\uparrow F_{R y}=\Sigma F_{y} ; \quad-1000 \sin 30^{\circ}=450 \sin 45^{\circ}-F_{1} \sin \left(\theta+30^{\circ}\right)$
$F_{1} \sin \left(\theta+30^{\circ}\right)=818.198$
$F_{1} \cos \left(\theta+30^{\circ}\right)=347.827$
$\theta+30^{\circ}=66.97^{\circ}, \quad \theta=37.0^{\circ} \quad$ Ans
$F_{1}=889 \mathrm{~N}$

Ans

Mustansiriyah University
Electrical Engineering Department
Dr. Salah M. Mahdi

College of Engineering
Engineering Mechanics Static

1.4 Cartesian Vector Notation

It is also possible to represent the x and y components of a force in terms of Cartesian unit vectors i and j . Each of these unit vectors has a dimensionless magnitude of one, and so they can be used to designate the directions of the x and y axes, respectively as shown in Fig.

$$
\mathbf{F}=\mathbf{F}_{\mathrm{x}} \mathbf{i}+\mathrm{F}_{\mathrm{y}} \mathbf{j}
$$

$$
\begin{array}{ll}
F_{x}=F \cos \theta & F=\sqrt{F_{x}^{2}+F_{y}{ }^{2}} \\
F_{y}=F \sin \theta & \theta=\tan ^{-1} \frac{F_{y}}{F_{x}}
\end{array}
$$

1.4.1 Coplanar Force Resultant

Using cartesian vector notation, each force is first represented as a Cartesian vector i.e.

$$
\begin{aligned}
& \mathbf{F}_{1}=F_{1 x} \mathbf{i}+F_{1 y} \mathbf{j} \\
& \mathbf{F}_{2}=-F_{2 x} \mathbf{i}+F_{2 y} \mathbf{j} \\
& \mathbf{F}_{3}=F_{3 x} \mathbf{i}-F_{3 y} \mathbf{j}
\end{aligned}
$$

The vector resultant is therfore

$$
\begin{aligned}
\mathbf{F}_{R} & =\mathbf{F}_{1}+\mathbf{F}_{2}+\mathbf{F}_{3} \\
& =F_{1 x} \mathbf{i}+F_{1 y} \mathbf{j}-F_{2 x} \mathbf{i}+F_{2 y} \mathbf{j}+F_{3 x} \mathbf{i}-F_{3 y} \mathbf{j} \\
& =\left(F_{1 x}-F_{2 x}+F_{3 x}\right) \mathbf{i}+\left(F_{1 y}+F_{2 y}-F_{3 y}\right) \mathbf{j} \\
& =\left(F_{R x}\right) \mathbf{i}+\left(F_{R y}\right) \mathbf{j}
\end{aligned}
$$

College of Engineering Engineering Mechanics Static

Mustansiriyah University
Electrical Engineering Department
Dr. Salah M. Mahdi

If in scalar notation is used, then we have

$$
\begin{array}{ll}
(\text { 土) } & F_{R x}=F_{1 x}-F_{2 x}+F_{3 x} \\
(+\uparrow) & F_{R y}=F_{1 y}+F_{2 y}-F_{3 y}
\end{array}
$$

$$
\begin{aligned}
& F_{R x}=\Sigma F_{x} \\
& F_{R y}=\Sigma F_{y}
\end{aligned}
$$

$$
\begin{aligned}
F_{R} & =\sqrt{F_{R x}^{2}+F_{R y}^{2}} \\
\theta & =\tan ^{-1}\left|\frac{F_{R y}}{F_{R x}}\right|
\end{aligned}
$$

(b)

(c)

Mustansiriyah University
Electrical Engineering Department
Dr. Salah M. Mahdi

College of Engineering
Engineering Mechanics Static
*2-52. The three concurrent forces acting on the screw eye produce a resultant force $\mathbf{F}_{\boldsymbol{R}}=0$. If $\boldsymbol{F}_{2}={ }_{3}^{2} F_{1}$ and F_{1} is to be 90° from F_{2} as shown, determine the required magnitude of F_{3} expressed in terms of F_{1} and the angle θ.

Cartesian Vector Notalion:

$$
\begin{aligned}
\mathbf{F}_{1} & =F_{1} \cos 60^{\circ} \mathrm{i}+F_{1} \sin 60^{\circ} \mathrm{j} \\
& =0.50 F_{1} \mathrm{i}+0.8660 F_{1} \mathrm{j} \\
\mathbf{F}_{2} & =\frac{2}{3} F_{1} \cos 30^{\circ} \mathrm{i}-\frac{2}{3} F_{1} \sin 300^{\circ} \mathrm{j} \\
& =0.5774 F_{1} \mathrm{i}-0.3333 F_{1} \mathrm{j} \\
\mathbf{F}_{3} & =-F_{3} \sin \theta \mathrm{i}-F_{3} \cos \theta_{\mathrm{j}}
\end{aligned}
$$

Resultant Force :

$$
\begin{aligned}
\mathbf{F}_{k}=\mathbf{0}= & \mathbf{F}_{1}+\mathbf{F}_{2}+\mathbf{F}_{3} \\
0 & =\left(0.50 F_{1}+0.5774 F_{1}-F_{3} \sin \theta\right) \mathbf{i} \\
& \quad+\left(0.8660 F_{1}-0.3333 F_{1}-F_{3} \cos \theta\right) \mathbf{j}
\end{aligned}
$$

Equating \mathbf{i} and \mathbf{j} components, we have

$$
\begin{gather*}
0.50 F_{1}+0.5774 F_{1}-F_{3} \sin \theta=0 \\
0.8660 F_{1}-0.3333 F_{1}-F_{3} \cos \theta=0 \tag{2}
\end{gather*}
$$

Solving Eq. [1] and [2] yields

$$
\theta=63.7^{\circ} \quad F_{3}=1.20 F_{1}
$$

Mustansiriyah University
Electrical Engineering Department
Dr. Salah M. Mahdi

College of Engineering
Engineering Mechanics
Static

2-54. Express each of the three forces acting on the bracket in Cartesian vector form with respect to the x and y axes. Determine the magnitude and direction θ of F_{1} so that the resultant force is directed along the positive x^{\prime} axis and has a magnitude of $F_{R}=600 \mathrm{~N}$.

$$
\begin{aligned}
& \mathbf{F}_{1}=\left\{F_{1} \cos \theta \mathbf{i}+F_{1} \sin \theta \mathbf{j}\right\} \mathbf{N} \\
& \mathbf{F}_{2}=\{350 \mathbf{i}\} \mathbf{N} \\
& \mathbf{F}_{3}=\{-100 \mathbf{j}\} \mathrm{N}
\end{aligned}
$$

Require,

$F_{R}=600 \cos 30^{\circ} \mathbf{i}+600 \sin 30^{\circ} j$
$F_{R}=\{519.6 \mathbf{i}+300 \mathrm{j}\} \mathrm{N}$

$\mathbf{F}_{\mathrm{R}}=\mathbf{\Sigma} \mathbf{F}$
Equating the \mathbf{i} and \mathbf{j} components yields :

$$
519.6=F_{1} \cos \theta+350
$$

$F_{1} \cos \theta=169.6$
$300=F_{1} \sin \theta-100$
$F_{1} \sin \theta=400$
$\theta=\tan ^{-1}\left[\frac{400}{169.6}\right]=67.0^{\circ}$
Ans
$F_{1}=434 \mathrm{~N}$
Ans

