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Calibration and validation 

 

Typical Steps of Simulation Studies 

Traffic simulation models are typically used for  

1. Assessment and planning of (road) infrastructures;  

2. Evaluation of advanced traffic management and information strategies; and  

3. Testing technologies and systems intended to increase the safety, capacity, and 

environmental efficiency of vehicles and roads.  

A simulation study usually involves a comparison of a current and a future situation, with possible 

modifications in the network (infrastructure), traffic management, information strategies, and 

relevant technologies or systems. In addition, the effects of external conditions such as increased 

demand or changes in traffic composition are investigated. The simulation task involves multiple 

steps, depending on the specific study questions. Most authors’ descriptions of the successive steps 

of a typical calibration study converge (see Dowling et al., 2004, for an example). A typical task 

list is: 

1. Define the objectives of the study and the alternative scenarios to be tested. 

2. Define the measures of performance that will be used to compare the current 

situation with the alternative.  

3. Define the network to simulate by:  

a. Characterizing links: number of lanes, lengths, desired speeds, and 

upstream and downstream nodes.  

b. Characterizing nodes: allowed turning movements, upstream and 

downstream links, signalization (traffic lights with fixed phases, adaptive 

controllers, roundabouts, priority rules).  

4. Define demand; this can be done from an additional model (usually static) or 

through the use of the existing data (in this case, measured flows on several links 

are needed), or by a combination of both.  

5. Run the simulation and check whether the model performs as expected 

(verification).  

6. Collect the data for calibration and validation by  

a. Collecting the data set that allows the definition of simulation entry 

variables (both static and dynamic).  

b. Collect the measures of performance that will allow comparison of 

simulation results with the observed current reality.  

7. Calibrate and validate the traffic simulation tool for the specific site and the 

reference scenario.  

8. Simulate the alternative scenarios; based on specific cases, describe at least one of 

the following:  

(a) new infrastructure; (b) new regulations; (c) new demand.  

9. Analyze the impact of the scenario on the simulation results by carefully 

scrutinizing the impact of the evolution of the scenarios on the chosen measure of 

performance.  

10. Write the report. 



Ph.D. Course  Traffic Simulation                     Prof. Dr. Zainab Alkaissi 

Lecture 4                                                             2022-2023 

 

When building the reference and alternative scenarios, one must define which traffic phenomena 

or behaviors should be included in the study and should be accurately described by the simulation 

model. For example, a tool does not necessarily have to describe the queue formations upstream 

of roundabouts if the researcher wants to evaluate the impact of ramp metering installations on a 

highway, but an accurate lane-changing process is essential. Disaggregate data analysis is 

necessary for each key behavior included in a simulation scenario. Optimally, this detailed data 

analysis is performed and reported by the developers of the simulation tool.  

 

Along with a detailed evaluation of the predictive capacity of the tool for each key behavior 

implied in the scenario to be simulated, aggregate calibration and validation must be completed 

for the application scenario. The calibration and validation of the model should focus on the 

specific site and traffic situations to be covered in the simulation study. Depending on the site 

chosen for the simulation, several variables should be considered: 

• Type of network: size (number of links and nodes); urban or interurban routing, with and 

without traffic signals, roundabouts, curves, ramps, and combinations,  

• Conditions of use: morning and evening peak hours, weekends, and holidays; weather 

conditions, traffic composition (percentages of trucks and passenger vehicles), evacuation 

needs,  

• Traffic management system: adaptive control for traffic signals, driver information 

collected by means of GPS or by onboard devices, for individual information anti-collision, 

and other advanced driver assistance systems (ADAS). 

With respect to traffic management systems, this component of calibration and validation focuses 

more on the settings of the systems since the disaggregate calibration and validation already 

demonstrated that the simulation model can reproduce these technologies and systems in general.  

 

Generic Procedure for Calibration and Validation 

Globally, calibration and validation of a simulation tool (with a set of parameters) is a process of 

comparison on an appropriate scale of the simulation results for chosen variables with a set of 

observations of the variables. (See Figure 1.) During calibration, the differences between the 

simulated and observed variables are minimized by finding an optimum set of model parameters.  

This is often formulated as minimizing an error measure e(p) (Vaze et al., 2009; Ciuffo and Punzo, 

2010a): 
 

𝑒(𝑝) = 𝑓(𝑀(𝑝) − 𝑑)                                                                                                                         [1] 
 

d is the observed measurement. 

 

Where the model M can, of course, depend on much more than parameters p. Thus, calibration 

becomes an optimization problem. The validation process estimates the difference between the 

simulation variables using the parameter set, resulting from calibration and an independent set of 

observed variables. In the following, a variable is referred to as a measure of performance (MoP). 

The comparison scale is the goodness-of-fit measure (GoF). The practical specification of 

calibration and validation relies on several factors:  

• Error function, generally GoF  

• Traffic measurement, usually called the MoP of the simulation model  

• Optimization method for calibration  
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• Traffic simulation model used  

• Transportation system (traffic scenario) to be simulated  

• Demand pattern used and accuracy of its estimation  

• Parameters to calibrate  

• Quality (in terms of error presence) of observed measurement  

• Possible constraints 

 

These factors make calibration and validation more complicated because it is difficult to define 

the general methodologies to be followed in all the cases. Depending on the particular specification 

of the calibration or validation, the strategy to be adopted in practice may be different. However, 

the calibration and validation framework shown in Figure 1 can still be maintained. 

For a specific traffic scenario, after defining the transportation network and corresponding demand 

pattern, the sensitive parameters of the model can be identified by means of a sensitivity analysis 

then, decisions should be made on the MoP, GoF, and optimization algorithm variables. 

Figure 1 depicts the comparison between the measurement of real values of the MoP and the 

simulated values with the help of a GoF measurement, which is the heart of both calibration and 

validation processes. The MoP choice must be made during the second step of the simulation study, 

linked strongly with the study objectives and in agreement with the operational aspects of the 

study. The choice of the GoF is technical and impacts the simulation results. 

 

During calibration, the parameter optimization loop permits a progressive definition of an optimal 

set of parameters corresponding to the subsample of the data chosen for calibration (Set 1 in the 

figure). The second subsample (Set 2) is used for validation. To minimize the impact of the choice, 

the subsample for calibration must be as representative as possible of the various observed 

situations of the studied transportation system. One can ensure this independence by duplicating 

the process: use Set 2 for calibration, reset the parameter optimization process, compare the 

optimal parameter set with those obtained from the first calibration procedure, and compare the 

GoF values resulting from validation with Set 1.  

Let us designate the parameter set obtained after successful calibration as pˆ. Calibration is 

incomplete without validation. Validation asks whether based on the model M above and the 

parameters pˆ estimated based on observed measurement d, how well another data set d′ 

approximated by the model. To answer this, once more e (p) must be computed, but now without 

the minimization of e (p) done for calibration. 
 

𝑒𝑣 = 𝑒(. , �̂�)                                                                                                                                        2 
 

In conclusion, the limited capacity of our models to depict reality makes it necessary, for their 

correct use, to follow a long iterative process of continuous verification of the steps. 
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Fig. 1 Depiction of the global framework of calibration and validation. The 

first data set (Set 1) is used for the calibration procedure. The successive 

steps of the parameter optimization procedure are represented with bold 

arrows. The second subset is used for validation (Set 2). The set of optimal 

parameters (p^), resulting from calibration serves as model parameters 

during the validation. When comparing the measured and simulated measure 

of performance (MoP) during the validation process, one must determine the 

distance between them measured with the help of the same goodness of fit 

(GoF) of the same amplitude at the end of the calibration process. (Source: 

Ciuffo, B. et al., 2012. The Calibration of Traffic Simulation Models: Report 

on the Assessment of Different Goodness-of-Fit Measures and Optimization 

Algorithms. MULTITUDE Project and JRC Scientific and Technical 

Reports. With permission.) 

 

 

Defining measure of performance (MoP) 

The MoP must be defined in strong interaction with the application of the simulation tool in mind 

and, most importantly, it is objective. For example, if the objective of the network modification 

between reference and future scenarios is to improve the mode share, one has to use the mode 

percentage as the MoP instead of, for example, vehicle queue length. Also, the MoP must be 

observable in reality with the available measurement devices and must be easily calculable from 

the simulation outputs. 

 

Defining and collecting a data set 

After choosing a MoP adapted to the objective of the work, the next steps are designing the 

experiment and collecting the data. We can distinguish between single-valued MoP (characterizing 

the global behavior of the simulation scenario with a single value) and multivalued MoP reflecting 

the evolution of the system during the simulation duration.  
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When the latter MoP is chosen, care must be taken in defining aggregation periods: overly long 

aggregation periods may average out specific characteristics of the traffic system; aggregation 

periods that are too short may include too much noise. The question of the coherence of the 

definitions of the observed and simulated MoPs should be carefully addressed, because the 

definitions may be the sources of multiple errors.  

A classic example is when an observed variable is defined as the arithmetic temporal mean speed 

and the output of the simulation is computed as the harmonic temporal mean speed.  Specifically, 

if extreme single-valued MoPs are used (such as maximum waiting time), the question of the 

sample representativeness is crucial and the MoP comparison must be made with an appropriate 

number of simulation runs.  

Table 1 proposes a list of MoPs, appropriate data collection procedures, and descriptions of their 

drawbacks and advantages.  

 

 

Measures of performance (MoPs) 

Typical MoPs used in the literature 

The measure of the performance of a system can be defined as a collection of variables necessary 

to describe the status of the system (Law, 2007). Depending on a system’s complexity, several 

MoPs may exist. However, since a system is usually observed for a specific purpose, the MoPs 

that best describe its status depend also on the analyses to be carried out. This concept also applies 

to transportation systems. Their specific characteristics thus influence the calibration and 

validation of a traffic simulation model.  

Common MoPs for the calibration and validation of a traffic simulation model are time series of 

speeds and counts collected on a road section (possibly differentiated per lane) aggregated over a 

certain time interval (Hourdakis et al., 2003; Toledo et al., 2003; Kim and Rilett, 2003; Toledo et 

al., 2004; Chu et al., 2004; Dowling et al., 2004; Kim and Rilett, 2004; Brockfeld et al., 2005; 

Schultz and Rilett, 2005; Balakhrishna et al., 2007; Ma et al., 2007; Ciuffo et al., 2008; Lee and 

Ozbay, 2008; Menneni et al., 2008; Vaze et al., 2009; Punzo and Ciuffo, 2009; Ciuffo and Punzo, 

2010b). The other fundamental variable of the traffic, namely, density, is used less frequently for 

calibration and validation purposes (Dowling et al., 2004; Ma et al., 2007) because it is more 

difficult to observe. Usually, density data are derived from the occupancy data from a single 

detector, which is not really accurate. 

Other measures that are frequently used in more specific studies are queue lengths and turning 

flows at intersections (Ma and Abdulhai, 2002; Park and Schneeberger, 2003; Toledo et al., 2003; 

Dowling et al., 2004; Merritt, 2004; Shaaban and Radwan, 2005; Oketch and Carrick, 2005). 

Finally, more recently, based on the availability of more detailed information, point-to-point 

network travel times have been studied, both as aggregated measures and as distributions (Park 

and Schneeberger, 2003; Toledo et al., 2003; Chu et al., 2004; Dowling et al., 2004; Kim et al., 

2005; Park and Qi, 2005; Oketch and Carrick, 2005; Hollander and Liu, 2008b; Vaze et al., 2009). 

Vehicle trajectory data may also be used for the calibration of traffic simulation models. Because 

trajectory data are difficult to collect, they are rarely used. However, since data from the NGSIM 

project (NGSIM, 2011) have been made available, new applications are possible (Chiu et al., 2010) 
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Table 1 Data collection techniques associated with measures of performance (MoPs). 
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Criteria for MoPs selection 

The criteria discussed below are useful for selecting MoPs for calibration and validation.  

Context of the application: MoP statistics should be important in the intended study. For 

example, point-to-point travel times are useful MoPs for validation when a traveler information 

system is to be evaluated on the basis of travel time savings. However, if a sensor-based incident 

detection system is studied, MoPs extracted from sensors (occupancies, flows, speeds) may be 

more useful. 
 

Independence: MoPs used for validation should be independent of any measurements used for 

calibration or estimating inputs to a simulated system. Origin–destination (OD) flows are 

commonly estimated by minimizing a measure of the discrepancy between observed and simulated 

traffic counts. Therefore, validation of the simulation model (only) against traffic counts may lead 

to overestimating the realism of the model.  

Error sources: In traffic analysis, a discrepancy between observed and simulated outputs can be 

explained by the following sources of error (Doan et al., 1999): 

• Travel demands (OD flows)  

• Route choices  

• Driving behaviors  

• Measurement errors in observed outputs 

The first three sources contribute to errors in the simulated output. The last source represents errors 

in the observed output relative to the true output. In most cases, the contributions of the three 

simulation error sources are confounded and cannot be isolated in a validation. The locations and 

types of MoPs to be collected should be chosen to reflect errors from all these sources and reduce 

the effects of measurement errors as much as possible. Measurement locations should provide 

spatial coverage of all parts of a network.  

Moreover, measurements near the network entry points will usually reveal errors in the OD flows 

with little effect from route choice and driving behavior models. As many measurement points as 

possible should be used to reduce the effects of measurement errors, assuming that the 

measurement errors are independent for different locations. 

 

Traffic dynamics: MoPs and the level of temporal aggregation at which they are calculated (15 

minutes, 30 minutes) should be chosen to facilitate testing whether or not the model correctly 

captures the traffic dynamics. This is especially true in network applications where both the 

temporal and spatial aspects of traffic are important.  
 

Level of effort required for data collection: In practice, this is often the most constraining factor. 

Point measurements (flows, speeds, and occupancies) are often readily available from an existing 

surveillance system. Other types of measurements (travel times, queue lengths, and delays) are 

more expensive to collect. It is also important to note that data definitions and processing are not 

standardized. For example, statistics such as queue lengths may be defined in various ways and 

surveillance systems may apply a number of time-smoothing techniques. It is therefore necessary 

to ensure that the simulated data are defined and processed the same way as the observed data. 
 

A number of runs: Most traffic simulation models are stochastic (Monte Carlo) simulations. 

Hence, MoPs should is calculated from a number of independent replications. The two main 
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approaches to determining the number of replications are sequential and two-step (Alexopoulos 

and Seila, 1998). In the sequential approach, one replication at a time is run until a suitable stopping 

criterion is met. Assuming that the outputs Yi from different simulation runs are normally 

distributed, Fishman (1978) suggested the following criterion: 
 

𝑅 ≥ 𝑅𝑖 = 𝑚𝑎𝑥 (2, (
𝑠𝑅(𝑌𝑖)𝑡𝛼/2

𝑑𝑖
)
2

)                                                                                                   [3] 

 

Here, R is the number of replications performed and Ri represents the minimum number of 

replications required to estimate the mean of Yi with tolerance di. 𝑠𝑅(𝑌𝑖) is the sample standard 

deviation of Yi based on R replications and 𝑡𝛼/2 is the critical value of the t distribution at 

significance level α. In the two-step approach, first, an estimate of the standard deviation of Yi is 

obtained by performing R0 replications. Assuming that this estimate does not change significantly 

as the number of replications increases, the minimum number of replications required to achieve 

the allowable error di is given by: 

 

𝑅𝑖 = (
𝑠𝑅0𝑌𝑖𝑡𝛼/2

𝑑𝑖
)
2

                                                                                                                                [4] 

 

The required number of replications is calculated for all measures of performance of interest. The 

most critical (highest) value of Ri determines the number of replications required. 

 

Choice of appropriate statistical tests for comparing simulated and observed MoPs 

The general simulation literature includes several approaches for the statistical validation of 

simulation models. These approaches include goodness-of-fit measures, confidence intervals, and 

statistical tests of the underlying distributions and processes. In many cases, however, they may 

not be applicable because both the real and the simulated traffic processes of interest are 

nonstationary and autocorrelated. The choices of the appropriate methods and their application to 

the validation of traffic simulation models depend on the nature of the output data. The following 

methods and their outputs are considered: 
 

• Single-valued MoPs (e.g., average delay, total throughput).  

• Multivariate MoPs (e.g., time-dependent flow or speed measurements at different 

locations, travel times on different sections). 
 

Single-valued MoPs are appropriate for small-scale applications in which one statistic may 

summarize the performance of a system. Multivariate MoPs capture the temporal and/or spatial 

distribution of traffic characteristics and thus are useful to describe the dynamics at the network 

level. It may also be useful to examine the joint distribution of two MoPs (e.g., flows and travel 

times) to gain more information regarding the interrelationships of MoPs. The next section 

describes the statistical tests needed to calibrate and validate a simulation tool. 

 

The goodness of Fit (GoF) 

A number of goodness-of-fit measures can be used to evaluate the overall performance of a 

simulation model. This section reports on the studies of Hollander and Liu (2008a) and Ciuffo and 

Punzo (2010a). Note that GoF methods can be used both for calibration and validation, and are 

reported here for both applications. Table 2 lists GoF measures used for the calibration of traffic 

flow models and indicates the works in which they have been used. Ciuffo and Punzo (2010a) 
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analyzed 16 GoF measures, in particular, using response surface techniques, and their suitability 

for use as error functions in Equation (1) was investigated. The authors derived the following 

findings: 

 

 Response surfaces confirm, as argued in the introduction, the complexity of the calibration 

problem and the need to use global optimization. Most of the response surfaces showed 

several local minima as well as wide areas with approximately constant values. Clearly, 

different choices in setting up a calibration problem generate different response surfaces.  

 Um, Us, –Uc, and −r (correlation coefficient) proved less suitable than other factors to be 

used in the objective function of the calibration. In particular, Us, Uc, and –r was always 

more irregular, showing several different minima in all plots. 

 The values of 3 and 5 as thresholds in GEH3 and GEH5 evaluations proved to be very high, 

and, consequently, a wide area in all their plots generated a constant value of the objective 

function. This suggests that, at least in the transportation field, 5 is probably a too high 

threshold to assess whether two series of data show a good fit, as proposed by the Highway 

Agency (1996).  

 All other GoFs showed similar behaviors on the whole, even if SE appeared to be the least 

sensitive GoF (the widest deep area around the “true” solution) but also the most regular 

around the minimum value.  

 RMSE seemed to offer higher irregularity than the other GoFs around the optimum value.  

 GEH1 probably showed the best capacity in highlighting the position of the minimum (in 

this case the threshold used seems to have a good impact). 

 MAE and MANE show the highest flatness of the objective function around the global 

solution. This could represent a problem in identifying an effective stopping rule for any 

optimization algorithm. 

 All these GoFs proved robust with respect to the introduction of noise to the data even with 

large errors. 
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Table 2 Measures of goodness of fit. 
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