
Topics:

Modules

Using import

Using functions from math

A first look at defining functions

4. Modules and Functions

Talking About Functions

A function has a name and arguments.

m = max(x,y)

name arguments

max(x,y) is a function call.We say that

Built-in Functions

The list of “built-in” Python functions is quite
short.

Here are some of the ones that require
numerical arguments:

max, min, abs, round

abs(-6) is 6

round(6.3) is 6.0

max(-3,2) is 2

round(3.5) is 4.0

min(9,-7) is -7

round(-6.3) is -6.0

Calling Functions

>>> diff = abs(a)

>>> a = 5

>>> b = 7

>>> m = max(a**b,b**a)

In a function call, arguments can be expressions.

Thus, the value of a is passed as an argument

to abs.

>>> s = ‘abcde’

>>> n = len(s)

>>> print n

5

The Built-In Function len

A function can have a string argument.

“In comes a string and out comes its length (as an int)”

Functions and Type

Sometimes a function only accepts arguments of

a certain type. E.g., you cannot pass an int

value to the function len:

>>> x = 10

>>> n = len(x)

TypeError: Object of the type int

has no len()

Functions and Type

On the other hand, sometimes a function is

designed to be flexible regarding the type

of values it accepts:

>>> x = 10

>>> y = 7.0

>>> z = max(x,y)

Here, max is returning the larger of two values

and it does not care if one has type int and the

other has type float.

Type-Conversion Functions

Three important built-in functions convert types:
int, float, and str.

>>> a = float(22)/float(7)

>>> a

3.142857142857143

>>> b = int(100*a)

>>> b

314

>>> c = '100*pi = ' + str(b)

>>> c

'100*pi = 314'

>>> x = 9

>>> y = sqrt(x)

NameError: name ‘sqrt’ not defined

How can we address this issue?

Some Obvious Functions are not
in the “Core” Python Library!

Modules

A way around this is to import functions (and

other things you may need) from “modules” that

have been written by experts.

Recall that a module is a file that contains

Python code.

That file can include functions that can be

imported for your use.

Widely-Used Modules

A given Python installation typically comes

equipped with a collection of standard modules

that can be routinely accessed.

Here are some that we will use:

math numpy urllib2

string scipy PIL

random timeit datetime

Import instruction

If you want to use the square root function
from the math module, then it must be imported:

MyModule.py

from math import sqrt

:

r = sqrt(250+110*sqrt(5))/20

:

Useful functions in math

ceil(x)

floor(x)

sqrt(x)

exp(x)

log(x)

log10(x)

sin(x)

cos(x)

the smallest integer >= x

the largest integer <= x

the square root of x

e**x where e = 2.7182818284…

the natural logarithm of x

the base-10 logarithm of x

the sine of x (radians)

the cosine of x (radians)

Legal: from math import sin,cos,exp,log

floor, ceil, int, round

x floor(x) ceil(x) round(x) int(x)

2.9 2.0 3.0 3.0 2

2.2 2.0 3.0 2.0 2

2 2.0 2.0 2.0 2

2.5 2.0 3.0 3.0 2

-3.9 -4.0 -3.0 -4.0 -3

-3.2 -4.0 -3.0 -3.0 -3

>>> help(‘math’)

What’s in a Module?

If you know the name of a particular function

and want more information:

What’s With the “dot” Notation: math.sqrt?

Calling a function from a
Module: Method 1

MyModule.py

from math import *

:

r = sqrt(250+110*sqrt(5))/20

x = cos(pi*log(r))

:

This is handy. You now have permission to use everything
in the math module by its name. However, this can open the
door to name conflict if the imported module is big like math.

Calling a function from a
Module: Method 2

MyModule.py

import math

:

r = math.sqrt(250+110*math.sqrt(5))/20

x = math.cos(math.pi*math.log(r))

:

You again have permission to use everything in the math
module by its name. But you must use its “full name” and that
involves using the “dot notation.”

Calling a function from a
Module: Method 3

MyModule.py

from math import sqrt, pi, cos, log

:

r = sqrt(250+110*sqrt(5))/20

x = cos(pi*log(r))

:

Here you take only what you need from the source module.
You get to use “nice” names without using the dot notation.
The danger of name conflicts minimized because you are
explicitly aware of what is imported.

Building Your Own Functions

We will build functions that already
exist in Python for the purpose of
comparison. Among these functions are
the Sine and Cosine mathematical
functions.
We will write it into a script named:
SimpleMath

Visualizing SimpleMath.py

Recall that
a module is
simply a .py file
that contains
Python code.

This particular
module houses
three functions:
sin and cos

cos

sin

SimpleMath.py

The Cosine and Sine Functions

def sin(x):

x = float(x)

y = x-(x**3/6)+(x**5/120)-(x**7/5040)

return y

They too have headers

DO NOT WORRY ABOUT THE MATH. THIS IS ABOUT THE STRUCTURE
OF PYTHONFUNCTIONS

def cos(x):

x = float(x)

y = 1.0-(x**2/2)+(x**4/24)-(x**6/720)

return y

The Cosine and Sine Functions

def sin(x):

x = float(x)

y = x-(x**3/6)+(x**5/120)-(x**7/5040)

return y

They too have bodies

def cos(x):

x = float(x)

y = 1.0-(x**2/2)+(x**4/24)-(x**6/720)

return y

Now let’s compare these functions in
the SimpleMath module with their
counterparts in the math module.

Check out Cosine and Sine
SimpleMath.py

import math

import SimpleMath

x = float(input('theta (degrees)=')

x = (math.pi*x)/180

MyCos = SimpleMath.cos(x)

TrueCos = math.cos(x)

MySin = SimpleMath.sin(x)

TrueSin = math.sin(x)

:

Check out Cosine and Sine

theta (degrees) = 60

SimpleMath.cos(theta) =

math.cos(theta) =

SimpleMath.sin(theta) =

math.sin(theta) =

0.49996457

0.50000000

0.86602127

0.86602540

Sample Output…

