
6. Lists of Numbers

Topics:
Lists of numbers
List Methods:
Void vs Fruitful Methods
Setting up Lists

We Have Seen Lists Before

How we talk about what is in a list:

5.0 is an item in the list x.

5.0 is an entry in the list x.

5.0 is an element in the list x.

5.0 is a value in the list x.

Get used to thesynonyms.

x = [3.0, 5.0, -1.0, 0.0, 3.14]

A List Has a Length

The following would assign the value of 5
to the variable n:

x = [3.0, 5.0, -1.0, 0.0, 3.14]

n = len(x)

The Entries in a List are
Accessed Using Subscripts

The following would assign the value of -1.0
to the variable a:

x = [3.0, 5.0, -1.0, 0.0, 3.14]

a = x[2]

This:

A List Can Be Sliced

Is same as: x = [10,40,50,30,20]

y = [40,50]

z = [10,40,50]

w = [30,20]

x = [10,40,50,30,20]

y = x[1:3]

z = x[:3]

w = x[3:]

Lists are Similar to Strings

s:

x:

A string is a sequence of characters.

A list of numbers is a sequence of numbers.

‘x’ ‘L’ ‘1’ ‘?’ ‘a’ ‘C’

3 5 2 7 0 4

Lists in Python
Now we consider lists of numbers:

Soon we will consider lists of strings:

The operations on lists that we are about to describe will be illustrated using lists
of numbers. But they can be applied to any kind of list.

The items
in a list
usually have
the same type,
but that is not
required.

A = [10,20,30]

B = [10.0,20.0,30.0]

C = [10,20.0,30]

Animals = [‘cat’,’dog’,’mouse’]

Visualizing Lists

A state diagram that shows
the “map” from indices to
elements.

Informal:

Formal:

0 1 2 3

x:

x---- >

3 5 1 7

0 ---> 3

1 ---> 5

2 ---> 1

3 ---> 7

Lists vs. Strings

There are some similarities, e.g., subscripts

But there is a huge difference:

1. Strings are immutable. They cannot be changed.

2. Lists are mutable. They can be change.

Exactly what does this mean?

Strings are Immutable

Before:

After:

0 1 2 3

s:

You cannotchange the value of a string

TypeError: 'str' object does

not support item assignment

s[2]= ‘x’

‘a’ ‘b’ ‘c’ ‘d’

Lists ARE Mutable

Before:

After:

0 1 2 3

x:

0 1 2 3

x:

You can change the values in a list

x[2] = 100

3 5 1 7

3 5 100 7

Lists ARE Mutable

Before

After

0 1 2 3

x:

0 1 2 3

x:

You can change the values in a list

x[1:3] = [100,200]

3 5 1 7

3 100 200 7

List Methods

When these methods are applied to a list,

they affect the list.

append

extend

insert

sort

Let’s see what they do through examples…

List Methods: append

Before:

After:

0 1 2 3

x:

0 1 2 3 4

x:

Use append when you want to “glue” an item on the end of a given list.

x.append(100)

3 5 1 7

3 5 1 7 100

List Methods: extend

Before:

After:

0 1 2 3

x:

0 1 2 3 4 5

x:

Use extend when you want to “glue” one list onto the end of another list.

t = [100,200]

x.extend(t)

3 5 1 7

3 5 1 7 100 200

List Methods: insert

Before:

After:

0 1 2 3

x:

0 1 2 3 4

x:

Use insert when you want to insert an item into the list. Items get “bumped” to the

right if they are at or to the right of the specified insertion point.

i = 2

a = 100

x.insert(i,a)

3 5 1 7

3 5 100 1 7

List Methods: sort

Before:

After:

0 1 2 3

x:

0 1 2 3

x:

Use sort when you want to order the elements in a list from little to big.

x.sort()

3 5 1 7

1 3 5 7

List Methods: sort

Before:

After:

0 1 2 3

x:

0 1 2 3

x:

Use sort when you want to order the elements in a list from big to little.

An optional
argument is
being used to
take care of
this situation.

x.sort(reverse=True)

3 5 1 7

7 5 3 1

Void Methods

When the methods

append extend insert sort

are applied to a list, they affect the list but
they do not return anything like a number or
string. They are called “void” methods.

Void methods return the value of None. This is
Python’s way of saying they do not return
anything.

Void Methods

A clarifying example:

>>> x = [10,20,30]

>>> y = x.append(40)

>>> print x

[10, 20, 30, 40]

>>> print y

None

x.append(40) does
something to x.

In particular, itappends
an element tox

It returns None and that is
assigned to y.

(Fruitful) List Methods

When these methods are applied to a list,
they actually return something:

pop

count

Let’s see what they do through examples…

The List Method pop

Before:

After:

0 1 2 3

x:

0 1 2

x:

m:

Use pop when you want to remove an element and assign it to a variable.

1

i = 2

m = x.pop(i)

3 5 1 7

3 5 7

The List Method count

Before:

After:

0 1 2 3

x:

0 1 2 3

x:

m:

Use count when you want to compute the number of items in a list
that have a value.

2

m = x.count(7)

3 7 1 7

3 7 1 7

Two Built-In Functions that
Can be Applied to Lists

len returns the length of a list

sum returns the sum of the elements in
a list provided all the elements are
numerical.

len and sum

Before

After

0 1 2 3

x:

0 1 2 3

x:

m:

s: 16

4

m = len(x)

s = sum(x)

3 7 1 5

3 7 1 5

len and sum: Common errors

>>> x = [10,20,30]

>>> s = x.sum()

AttributeError: 'list' object

has no attribute 'sum‘

>>> n = x.len()

AttributeError: 'list' object

has no attribute 'len'

Legal But Not What You
Probably Expect

>>> x = [10,20,30]

>>> y = [11,21,31]

>>> z = x+y

>>> print z

[10,20,30,11,21,31]

Legal But Not What You
Probably Expect

>>> x = [10,20,30]

>>> y = 3*x

>>>print y

[10,20,30,10,20,30,10,20,30]

Setting Up “Little” Lists

The examples so far have all been small.

When that is the case, the “square bracket”
notation is just fine for setting up a list:

Don’t forget thecommas!

x = [10,40,50,30,20]

Working with Big Lists

Setting up a big list requires a loop.

Looking for things in a big list requires
a loop.

Let’s consider some examples.

A Big List of Random Numbers

from random import randint as randi

x = []

N = 1000000

for k in range(N):

r = randi(1,6)

x.append(r)

x starts out as an empty list and isbuilt
up through repeated appending.

Roll a dice one million times. Record the outcomes in a list.

A List of Square Roots

Same idea. Create a list through repeated appending.

from math import sqrt

x = []

N = 1000000

for k in range(N):

s = sqrt(k)

x.append(s)

