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Intended Learning Outcomes

At the end of this subject (30 Week\ 3 Hours per week) the student will be able to:
1. Develop problem-solving skills.

Understands of the analysis of A.C. circuits.

Comprehend the concept of transient analysis of electrical circuits.

Explain the Admittance and Current Locus.

Explain the resonant circuits.

Grasp the concept of two port networks.

Understand the Periodic non-Sinusoidal Signals.

Understand the analysis of Polyphase Circuit.

A S AN

Understand the properties of Coupling Circuits.
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A Review of A.C. Waveforms and Analysis of A.C. Circuits

Sinusoids

e A sinusoidal is a signal that has the form of the sine or cosine function.
e A sinusoidal current is usually referred to as Alternating Current (A.C.).
e For the sinusoidal voltage v(¢)= V. sin ot , where:

Vm 1s the amplitude of the sinusoid.

o 1s the Angular frequency in radians/s.

ot 1s the argument of the sinusoidal wave.

(i) A vif) A

V - V
N/, N/,
B R NI NG~ R N N

m m

(a) (b)

From above figure, T is called the period of the sinusoid.

A periodic function is one that satisfies f (¢ )= f (¢ nT), for all ¢ and for all integers n.

N|=

f:

o=2T7f

While w is in radians per second (rad/s), f'is in hertz (Hz).

More general expression for the sinusoid is:
v(t) = V, sin(wt + @)

Where is the (ot+¢) argument and ¢ is the phase. Both argument and phase can be
in radians or degrees.

vy = V. sin i

vy = WV, sin(wl + ¢b)
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Phasors

e A phasor is a complex number that represents the amplitude and phase of a
sinusoid.

e Phasors provide a simple means of analyzing linear circuits excited by sinusoidal
sources; solutions of such circuits would be intractable otherwise.

) = V. c i —. /
u(t) = V,, cos(wt + ¢) = V=V,/¢
(Time-domain (Phasor-domain
representation) representation)
Imaginary axis

A

v \,
\[.c;lding direction
e

T » Real axis

-agging direction

."I||I
La;
/
\>
A phasor diagram showing V = V,, /Ppandl =1, /—6.
Complex Numbers
e Complex number z can be written in rectangular form as: z = x + jy
where x is the real part of z; y is the imaginary part of z.

e The variables x and y are the real and imaginary parts of z in the complex
plane.
The complex number z can also be written in polar or exponential form as

where 7 is the magnitude of z, and is the phase of z. We notice that z can be
represented in three ways:

= x + jy Rectangular form

z=r/¢ Polar form
z = re’? Exponential form

N S EOT r ¥
= N oy, ¢ = tan~ —

X

X = rcosd, ¥ = rsindg
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Imaginary axis

Y
P
. / i
=N r, i y
” I
I+ A .
/ ‘\. & i
0 ! - L—» Real axis
= i
-2j
Complex Plane

z=x+jy=r/¢ = r(cos¢ + jsing)

Sinusoid-phasor transformation.

Time domain representation Phasor domain representation
V,, cos(wt + ) Vo L(,i

V,, sin(wt + ¢) Vo /b — 90°

I, cos(wt + ) I”,ﬁ

1, sin(wt + 60) I, /6 — 90°

Phasor Relationships for Circuit Elements

Circuits involving the passive elements R, L, and C. What we need to do is to
transform the voltage-current relationship from the time domain to the frequency
domain for each element.

1. Voltage-Current Relations for a Resistor:

i |
E— E—
+ +
l R A" R
v=IR V=IR
(a) (b)

Voltage-current relations for a resistor (a) time domain, (b) frequency domain.
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If the current through a resistor R is i = I, cos (ot + ¢), the voltage across it is given
by Ohm’s law as:

v = iR = Rl cos(wf + ¢)

The phasor form of this voltage is:

V=Ri, d,:« Im A

e

| -

0 Re

Phasor diagram for the resistor.

2. Voltage-Current relations for inductor:
For the inductor L, assume the current through it is i = I, cos (@t + ¢), the voltage
across the inductor is:

i ;
o= I_T = —wlI,, sin(fawt + &)
dt

OR

v = wlLl, cos(wt + ¢ + 90°)

V = jwll
i 1
Im A
- -
\
I 5 = I W
I
_g di V = jolLl \
=LE Jw
it h
(a) (b) >
0 Re

Voltage-current relations for inductor

(a) time domain, (b) frequency domain. Phasor diagram for the inductor; I lag V.
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3. Voltage-Current relations for Capacitor:
For the capacitor C, assume the voltage across it is v =V}, cos (@t + ¢), The current

through the capacitor is:

dv
i(t) =C—
dt
I = jeCV = v = ]
& e jeC
i | Im A
—_— —_—
=
+ + \\w
I \
3 =i \ = y
N
. - \¢
—cd I=jwCV 0 Re
= di Je Re
Summary of voltage-current relationships.
Element Time domain Frequency domain
R v=Ri V = RI
i
L v=L> V = joll
dt
dv I
. _ A _—
Z ; C(h‘ JoC

Impedance and Admittance

e The impedance Z of a circuit is the ratio of the phasor voltage V to the phasor

current I, measured in ohms (€2).
e The admittance Y is the reciprocal of impedance, measured in siemens (S).

e The voltage-current relations for the three passive elements as:

¥ JowC

V = RI, V = jwll, A

These equations may be written in terms of the ratio of the phasor voltage to the
phasor current as:

= jwl,

Lo AT
T I I  jwC
From these three expressions, we obtain Ohm’s law in phasor form for any type of

element as:

Z1

f=— or V
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where Z is a frequency-dependent quantity known as impedance, measured in ohms.
As a complex quantity, the impedance may be expressed in rectangular form as:

Z=R4 X
The impedance may also be expressed in polar form as:
Z=|Z|/8

Z:R+_EX:|Z|£

— X
Z| = VR + X2, 0 = tan ' =

R

R = |Z|cos8, X = |Z|sind

e It is sometimes convenient to work with the reciprocal of impedance, known
as admittance.

e The admittance Y is the reciprocal of impedance, measured in siemens (S).

1 I
YV = — = —
Z v

As a complex quantity, we write Y as

Y = G + jB

Where G = Re Y is called the conductance and B =1Im Y is called the susceptance.

Admittance, conductance, and susceptance are all expressed in the unit of siemens
(or mhos).

|
R + jX

& =

By rationalization:

o e
R+jX R—jX R>+X°
Equating the real and imaginary parts gives:

R X
i B 2
R? + X2 R? + X2

G+ =

Impedances and admittances
of passive elements.

Element Impedance Admittance

R Z=R Y =—
R
2 Z = jwL Y =- ]
Jjwl
1 : sa e
G = 70C Y = jwC
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Resonance in A.C. Circuits

The resonant circuit is a combination of R, L, and C elements having a frequency
response characteristic as shown in Fig. (1). The response i1s a maximum for the
frequency f;, decreasing to the right and left of this frequency.

A network will be in resonance when the voltage and current at input terminals are
in phase, so the equivalent impedance and admittance consist of only the real part
and the power factor is unity.

'Y
E
™ | FE SR [
I
070y = — - - s

s |

Fig. (1) current versus frequency for resonant circuit

e Resonance is a condition in an RLC circuit in which the capacitive and
inductive reactances are equal in magnitude, thereby resulting in purely
resistive impedance.

e f; is the resonance or center frequency, fi& f> are the lower and upper
frequencies.

o There is a range of frequencies at which the current is near its maximum value
and the impedance is at a minimum. Those frequencies corresponding to 0.707
of the maximum current are called the band frequencies, cutoff frequencies
(fi& f2) or half-power frequencies.

e The range of frequencies between the fi and /> is referred to as the bandwidth
(B.W) of the resonant circuit.

e When resonance occurs due to the application of the proper frequency (f;), the
energy will be oscillating between magnetic field of inductance and electric
field of capacitance.

e There are three types of resonant circuits: series, parallel and combined.

1- Series Resonant Circuit

The basic configuration for the series resonant circuit (series or parallel) must have
inductive and capacitive elements, as shown in fig. (2-a), and the figure (2-b) is the
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result of combining the series resistive elements into one total value.
R L

—

1
I
S [J\D* e

Source

) 0) Fig. (2)
R=R,+ R+ Ra

The total impedance of this network at any frequency is determined by:
Lr=R+jX;—jXc=R+jX; —Xo)

The resonant conditions will occur when:

removing the reactive component from the total impedance equation. The total
impedance at resonance is then simply:

e The subscript s will be employed to indicate series resonant conditions.
e For resonance X1 = Xc, Substituting yields:

1 I
wL = o0 and w = IC
1 1 J'= hertz (Hz)
W = —— or = — L = henrnes (H)
VIC 2rvVIC C = farads (F)

The current through the circuit at resonance is:

_ELC
RLO°

E
I =—/L0°
R

Consider also that the input voltage and current are in phase at resonance.

e Since the current is the same through the capacitor and inductor, the voltage
across each is equal in magnitude but 180° out of phase at resonance:
180°
= 0 0) — 0
Vi = (I £0°) Xy £90°) = IX; £90 out of

Ve = (I £0°)(Xe £-90°) = IXp £-90° phase
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and, since X7 = Xc, the magnitude of V7 equals V¢ at resonance; that is,

I'-I:I_"_: = I"rf:

The Quality Factor (Q)

The quality factor Q of a series resonant circuit is defined as the ratio of the reactive
power of the inductor or the capacitor to the average power of the resistor at
resonance; that is:

reactive power

average power

e The quality factor is also an indication of how much energy is placed in storage
(continual transfer from one reactive element to the other) compared to that
dissipated.

e For series resonant circuits used in communication systems, Oy is usually greater
than 1.

e The lower the level of dissipation for the same reactive power, the larger the QO
factor and the more concentrated and intense the region of resonance.

and 0, =—=—

If the resistance R is just the resistance of the coil (R;), where:

X
Qc&ﬂzglz_L RzRI
K
If we substitute:
w, = 27f,
1
and then fi=——
27VIC

We have:
o, = WL _ 2wl _ :_«,.—( 1,—)£
R R R\ 2aVLC
_£( 1 'ﬁ_[‘v’rl) L
R\VLcC _J VL) RVLIC
and o. = 1 /L
Ry C

AR
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= X E B X E ?
Vr = Z, =R (at resonance)
and Vi, = QsE
L XoE XcE
or C = . - R
and Ve, = O:E

e The total impedance of the series R-L-C circuit is:

Li=R+jX-jXo o Lr=R+j(-Xp)

1 1
“ufc * =50

For the capacitor: Xe

The hyperbolic curve for Xc¢ (f) is plotted in figure (3) below.
b X ()

f
Fig.3 Capacitive reactance versus frequency

If we place the two figures of inductive reactance and capacitive reactance on the
same set of axes, we obtain the curves of figure (4).

X%

Xp

x;

Xep = Xy Xy = Xp

Fig.4 Frequency response of series R-L-C circuit at resonances

The condition of resonance is now clearly defined by the point of intersection in
curve in the figure (4) when X;= Xc.

'Y
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e  For frequencies less than f;, it is clear that the network is primarily capacitive
(Xc> X1).

° For frequencies above the resonant condition, X; > X¢, and the network 1is
inductive.

e  The minimum impedance occurs at the resonant frequency and is equal to the
resistance R.

In general, therefore, for a series resonant circuit:

f<f: network capacitive; I leads E
f=f: network inductive; E leads [
f=/: network resistive; E and I are m phase

Half-power frequencies are those frequencies at which the power delivered is one-
half that delivered at the resonant frequency; that is,

Ppax = IimR

and  Pypr = I'R = (0.707e) 'R = (0.5)([ ) = l.'Pm:u:

b3 |

PI{F'}': Pma.‘::

In terms of Qs, if R is larger for the same Xz, then Qs is less, as determined by the
equation Os = msL/R.

Zr= VR + (X — Xo
becomes V2R = VR + (X7 - .YC):

or, squarmng both sides, that
R =R+ (X; - Xp)°
and R = (X; — Xo)

Taking the square root of both sides gives:
R=XL-XC or R-XL-X(FO

Let us first consider the case where X; > Xc, which relates to f> or @,. Substituting
oL for X7 and 1/@2C for Xc and bringing both quantities to the left of the equal sign,
we have:

1

m3C=G or Rm;—m§L+E:D

R—wl +

which can be written:
1

R
w3 — =—w,——=0
L’ IC

Solving the quadratic, we have:

VY
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-

wH -

=

_ (R = V=R - [-(4LO)]

and Wy = +i + = R- =
2L 2\yL° LC
_ _1[R 1 [{RZ, 4

with fa= 211'[2_{ + 3\“ (L] - LC‘} (Hz)

If we repeat the same procedure for Xc > Xz, which relates to o1 or fi such that:

Ty = \/RZ +((x. - X))’

the solution f; becomes:

_1[ R 1 [{R? 4
“ﬁ__wl_EJrEu'(LJJFLC] (H2)

The bandwidth (BW) is:

i, "
BW =f:—f1=?

Substituting R/L = «,/Q, from Q. = w.L/R and 127 = f,/w, from
w; = 27f; gives us

e = vy

of BW =—

L—hHN _ 1

Iz o

e The ratio (f> - f1)/fs is sometimes called the fractional bandwidth, providing
an indication of the width of the bandwidth compared to the resonant
frequency.

e It can also be shown through mathematical manipulations of the pertinent

equations that the resonant frequency is related to the geometric mean of the
band frequencies; that is:

= VAif

V¢
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2- Parallel Resonant Circuit

The parallel resonant circuit has the basic configuration of figure (5).

o) vk J ok

Fig. 5 parallel resonant circuit
e For the parallel resonant circuit, the impedance is relatively high at resonance,
producing a significant voltage for Vc and V.
e Resonance will occur when X7 = Xc, and the resonant frequency will have the

same format obtained for series resonance.
. I .
Y H(w) - = — + JoC +
v

I N [\
Y + jl wC — |
!\] \ tr?! ."r

Resonance occurs when the imaginary part of Y is zero.

_ l
i = ()
tr_h"._

1
— rad/s

hpy — ,—L C

In the parallel circuits we are replacing R, L, and C in the expressions for the series
circuit with 1/R, C and L respectively, we obtain for the parallel circuit:

1 I 1V 1 1 ,“( 1 )3 1
= — + 1/ + Dy = + A/ +
“1 2RC \'(mc) LC “2 7 2rc " N \2rC LC

B : o= 20 RC
— Wy — W —_ —_— = — = W =
2 ' T RC B v ol

The half power frequencies in terms of the quality factor are:

) r‘l 1 \? (1 . /1 o
@ = @[ 1+ {55 ) 200 2T @oy! '[-\:(__; ) 20

For high-Q circuits (Q >10)

B B
W, = Wy — 7, W, = wy + —

Yo
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3- Combined Resonant Circuits

The combined circuit is mixing of serial and parallel component, for this circuit at
resonance , the parameters of quality factor Q , bandwidth ( B.W or B), voltages and
currents can be calculate by find serial or parallel equivalent of the combined circuit
as below:

3-1 Serial to Parallel Conversion

We could convert the serial branch to parallel and determine the Q as shown below.
R-L circuit

Rp=Rs (1 +Qsz) |
Lr=Ls (1 +Qs) / Qs) " ,
Where Qs = (O)o Ls) / Rs %Rp % Lp
Ls’

e R-C circuit

Rp=Rs (1 + Qsz)
Cr=Cs (Qs’/ (1 +Qs%))
Where Qs= 1/ wo Cs Rs

Cp

Rs —
% Rp

3-2 Parallel to Serial Conversion
e R-L circuit
Rs=Rp (1/ (1 + Q) Rs
Ls=Le (Q7 / (1 +Qr) Sw D =
Where Qr=Rp/(®o Lp) Ls’

e R- C circuit |
Rs =Rp (1/(1 + Qp?))

Co=Cp (1+ Q) / Q) —) % Re
Q,= o CpRy %"’ T

1
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Example.1

a. For the series resonant circuit of below, find I, Vg, Vi, and V¢ at resonance.
b. What is the Qs of the circuit?

c. If the resonant frequency is 5000 Hz, find the bandwidth.

d. What is the power dissipated in the circuit at the half-power frequencies?

. ik
=T 00
+] T rR=20 x=10 |,
E=10VZ0 Yo = 007V,
—
Solutions:
a Zr=R=20
E _10V£0°
I=—=—"—=5A/L0
Z;, 20.40°

Ve=E=10V £0°
Vi = (I £0°)(Xz £90°) = (5A £0°)(10 42 £90°) = 50V £290°
V=T L0 Xo£-90°)=(5A £0°)(10 ) £ —90°) =50V ~L-90°

- X 100
= — =%
' R 20
f. 5000 Hz
c. BW=f-fi="——-=———=1000Hz
0:
d Poge = Poee = ek = S jsarem=2sw
Example.2

The bandwidth of a series resonant circuit is 400 Hz.

a. If the resonant frequency is 4000 Hz, what is the value of Os?
b. If R =10€Q2, what is the value of X, at resonance?

c. Find the inductance L and capacitance C of the circuit.

Solutions:

BH’—L o £ 4000Hz
YT Y ST B womz
L

X
bg=7 o X=0R=(l0(100)=100

X,
p gpsneny i pa-thes S o e
2f,  27(4000 Ho)
I 1 1
X = C= E
Tomfc T 7T afXe 2x(4000 HZ)(100 Q)
= 0.308 4F

ARY
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Example.3

A series R-L-C circuit has a series resonant frequency of 12,000 Hz.

a. If R =5 Q, and if X} at resonance is 300Q2, find the bandwidth.
b. Find the cutoff frequencies.

Solutions:
X 3000
a. 0. = F o ﬁ = 60
BW = J: = 713‘000}12 = 200 Hz
Q: 60 &

b. Since Q. = 10, the bandwidth 1s bisected by £, Therefore,

h=fit g = 12,000 Hz + 100 Hz = 12,100 Hz

and f; = 12,000 Hz — 100 Hz = 11,900 Hz

Example.4

_ _ , I (mA)
a. Determine the Qs and bandwidth for the

200

response curve of figure shown.

b. For C= 101.5 nF, determine L and R for
100

the series resonant circuit. /

c. Determine the applied voltage. 1

e

L4
L+

\

Solutions:
a. The resonant frequency 1s 2800 Hz. At 0.707 times the peak value,

BIV = 200 Hz
_ f _ 2800Hz _
- =B~ 200mz ¥
o o
= rrVIC or L= axiflc
S - 1 -
47°(2.8 X 10° Hz)’(101.5 X 10 °F)
= 31.832 mH
X ~ X;  2(2800 Hz)(31.832 X 10 *H)
O: = ? or R= a = 14
=40 Q)
c Im.{—% or E=1I_R

= (200 mA)(40 Q) = 8V

ol 7~ 2000 3000

4000 f(HZ)

YA
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Example.S

A series R-L-C circuit is designed to resonant at s, =105 rad/s, have a bandwidth of
0.15ms, and draw 16 W from a 120 V source at resonance.

a. Determine the value of R.

b. Find the bandwidth in hertz.

c. Find the nameplate values of L and C.

d. Determine the Qs of the circuit.

e. Determine the fractional bandwidth.

Solutions:
E’ E* (120Vv)
P=" and R="=221Y) _g90
: R = 2 16 W
b f= %= 10::«1-5 = 15.915.49 Hz
ZT T
BW = 0.15f, = 0.15(15.915.49 Hz) = 2387.32 Hz
c. Eq. (20.20):
R R 900 ()

W= — — — —
BW=Z ™ L= 003w = 2a@isinnm) P =H
.f:'. = 1;'— 31ld C = wl 7 = ; 7 1 ~» X 3

27VIC 472 4%%(15.91549 Hz)%(60 X 10 3 H)
= 1.67 oF
X, 2fL 2 i
i o <X 2L _ 2¢(1591549 Ha)(60 mH) _
“s T R R 900 0
H-fi BW 1 1
e = =—=——=1015
£ P T
Example.6

For the parallel circuit shown below:

a. Determine the resonant frequency f,.
b. Find the total impedance at resonance.

c. Calculate the quality factor, bandwidth, and cutoff frequencies f; and
> of the system.

d. Find the voltage F at resonance.
e. Determune the currents J; and I~ at resonance.

. | e

Zr +
I=1ﬂmA(T> ‘ Rsélﬂkﬂ L%lmH CAT=1pF T

\ - v
Source “Tank circuit™

14
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Solutions:

a. The fact that &; 1s zero ohms results 1n a very lugh O, (= A /R;). per-
mitting the use of the following equation for f,:

1 1
== VIe T 27V (1 mH)(1 uF)
— 5.03 kHz

b. For the parallel reactive elements:
(X; 290N X £ —90%)
L ” L= : —
+i(XL — Xe)

but X; = X, at resonance, resulting in a zero in the denominator of
the equation and a very high impedance that can be approximated by
an open circut. Therefore,

Zr, = R || Z. || Ze = R; = 10 kQ
R, R 10 k(2

c. Op = Xz, B 2wf,l  2w(5.03 kHz)(1 mH) - 3ledl
fo 5.03 kHz
BV = = — 15.90 Hz
o, 316.41
Eq. (20.39a):
_ 11 [1 4cC
"ﬁ_nhrC'[R 1,.,"31+ L}
_ 1 11, 4P
4w(l pF)| 10k y (10k0)* 1 mH
= 5.025 kHz
=1L, [1, 4C
4rC|R VR L
= 5.041 kHz
d. Ve = IZr, = (10 mA)(10 k(1) = 100 V
Vr Ve 100V 100V
e, ;] = — = = = =316 A
X, 2af,L  2w(5.03kHz)(1mH) 3160
Ve 100V
I-= = =316 A (= Q,1)

X 31.6 {2
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Admittance and Current Locus

AR
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Admittance and Current Locus

Locus diagrams are the graphical representations of the way in which the response of electrical
circuits vary, when one or more parameters are continuously changing.
Electric circuit analysis could be implemented by using engineering locus shapes, where: [=V.Y
(ohm’s low) and constant voltage “V”, so the admittance locus “Y” represents the change in current
“I”” value with respect to change in element value. So, Locus curves are vector diagrams where only
the tip of the vector is dependent on some parameter (o, R, L & C).
Admittance “Y”: It’s reciprocal of impedance “Z” or vice versa (Z = 1/Y or Y = 1/Z,), that is a
complex number consists of real and imaginary parts, its unit is mho (O).

e The susceptance (B) is the imaginary part of admittance (Y), where the real part

is conductance (G). In SI units, admittance is measured in Siemens.

e The reciprocal of admittance is impedance (Z), where the imaginary part is reactance (X),
and the real part is resistance (R).

1. Current and Admittance Locus for R-L Series Circuit
Case 1: when R is varied, and Xy is constant.

Refer to the series R-L circuit shown in the figure (a) below with constant X and varying R.

L%
-F it ?ﬂ h 1
v (OO 2R
<

e The current I lags the applied voltage V by a phase angle:
® =tan™! (X1/R) for a given value of R.
e When R=0, the current is maximum equal to V/Xy and lies along the I axis with phase angle
equal to 90°.
e When R is increased from zero to infinity the current gradually reduces from V/Xi to zero, and

phase angle also reduces from 90° to 0°.
1 1 G—-jB _G-—JB G B

LR = T BT B G—jB 4B ¢ +B e +B
So:
XL=i and R=L
G2 + B G2 + B2

From Xi relationship (Constant Element): G? + XE +B%2=0
L
Or

G2+ + B + (i)z = (i)z

2X], 2Xp

Yy
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6+ (3+0w) = ()
2X,)  \2X,
The above equation is a circle (as compared with the general circle equation
(x - h)? + (y - k)* =1 %) with center (0, - —) and radius —.
L L

From real part of the equation (variable element), G must be always positive to give (because) R
always positive, so the admittance locus is half right circle.

2

A JX
e R=0 R increases

Y Locus Plane Z Locus Plane

Note: Current locus is the same as admittance locus multiplied by the applied voltage “V” (I=V*Y),
so there are three cases:

(V=1) current & admittance locus are the same,

(V>1) current > admittance locus

(V<1) current < admittance locus.

Example:

100V applied to series R&L circuit with variable “R” and X;=10Q. Draw the admittance and current
locus.
Solution:

R is variable and X1 =10€2, so the admittance locus its half right circle with:

Center = (0, -1/2Xvr) = (0, -1/20 O)

And radius = (-1/20 O)

And the current locus (I=V.Y) is half right circle too with:

Center = (0, -100/20) = (0, -5 A) and radius = -5A

Note Y1, Y2, Y3,..., etc. represents complex value of total admittance for the circuit. While I, I, I3,,
etc. represents complex value of total current in the circuit.

Y Locus Plane
4 Im 4 1B ]
5 Be 0.05 G

=

-10 Curent Loci . / R increases

Yy
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Case 2: When X is varied, and R is constant.

The current Ir. lags behind the applied voltage V by a phase angle ® = tan!(X1/R). When X1 =0, the
current is maximum equal to V/R and lies along the +ve V axis with phase angle equal to 0°. When
XL 1s increased from zero to infinity the current gradually reduces from V/R to 0 and phase angle

increases from 0° to 90°.

R
AN

Fx,

A few other points will confirm the semicircular locus, with the center at 1/2R and radius 1/2R.

Or in other way:

Z=R+jX, = 1. _ 1. *G—]:B:G—jB: G iy B
G+jB G+jB G—jB G?+B? G?4+B? ~G?+B?
—-B G
N=Gyp MM R=mp
From R relationship (Constant Element):
G
GZ+BZ=E

GZ—%+B2 =00rG2—Ri+BZ+ (i)z =(i)2

o -

The above equation is a circle with center ( %, 0) and radius %

2

From imaginary part of the equation (variable element Xi), B must be always negative to make

(because) X1 always positive, so the admittance loci are half lower circle.

'y IB P e >~ 'X
- - -’\
L= !/' N’ég}{c’ted S =0 Xrsl-—-c - T Xy increases
\ ¢”:’—,‘ -7 3
= - > Xo|---------A---
I'R G Xl z~
/ L=0
X, incr L e
<«— XL Increases R=0 R Rr

Y Locus Plane

Z Locus Plane

A2
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Example:

20V applied to series R-L circuit with variable “L” and R=5€. Draw the admittance and current locus.
Solution:

X1 1s variable and R =10Q the admittance locus, its half lower circle with:

Y = R . = ——— [tan™ ;. wl./R)
t+ Jwl. \. R: : ({1)14):
Note that for wL =0, Y = (1/R)/0°; and for oL — o0, Y — 0/=90°. When oL = R,
1 .,
X =/ —45

Centered at (0, %) = (0, 0.1 O) and radius % = 0.10

The current locus (I=V.Y Ohm's law) is half lower circle too with center = (0, V/2R) = (0, 20/10)=
(0,2 A). And radius = V/2R=2A

iB Y Locus Plane

»

Current Loci

Note Y1, Y2, Ys...etc. represents complex value of total admittance for the circuit. While I, I,

I5,...,etc. represents complex value of total current in the circuit.

2. Current and Admittance Locus for R-C Series Circuit
Case 1: when Xc is varied and R constant.

Fixing the resistance and change the capacitance will give straight line parallel to the imaginary axis
in the Z-plane (Impedance Locus) while it will be half upper circle in the Y-plane (Admittance Locus).
Also, it will be half upper circle in the current Locus.

/, R
T - AVAVAV:
v (© ) )l_-" X,

Yo
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_ 1 1 G—jB G-|jB G . B
G—jB G+jB G—jB G?+B? G?+B? ~G?+B?
B
X=mrp ™ R

From R relationship (Constant Element):
G2+BZ=E
2 2 R

2_G, p2 _ 2_6G | p2 Yy (L

2-S+B =062 - L1874+ (&) =(3)

1\° 1\°
o)+ (3)
( 2R + 2R
The above equation is a circle with center ( %, 0) and radius i

From imaginary part of the equation (variable element), B must be always positive to make (because)
Xc always positive, so the admittance locus is half upper. circle.
4B 4 X Xc=0

4—— X increases T R
» =

R
X XG0 = Xeif---DS
X G

— . ——p -Xoo|------m N
Soo~~Jd/2R /i 1/R
\ . ™o = - !

\ LN -~ it /

AR = =» -Xesp-------------3 :

N‘eglecfted l Xc mcreases

R -
Y Locus Plane Z Locus Plane

Example:

50V applied to series R-C circuit with variable “C” and R=20€2. Draw the admittance and current
locus.

Solution:

Variable “C” and R=20€Q2 the admittance locus is half upper circle with:

Center = (1/2R, 0) =(0.025 0, 0), and radius = 0.025 O

While the current locus is half upper circle with:

Center = (V/2R, 0) =(1.25 A, 0), and radius = 1.25 A

B Y Locus Plane

0.025 }----—=- b, Xc increases

G
0.05
Re
@ B
1:2:5 2.5
Current Loci

1



AL-Mustansiriyah University Electrical Circuits Electrical Eng. Dep.

Case 2: when R is varied and Xc constant.

Fixing the capacitance and change the resistance will give straight line parallel to the real axis in the
Z-plane (Impedance Locus) while it will be half right circle in the Y-plane (Admittance Locus). Also,
it will be half right circle in the current Locus.

It 2 ch
A |

v /?F:‘

_ 1 1 G-jB G-jB G B
G+jB G+jB G—jB G?+B? G?+B? G? + B2
B G
So: Xc=m and R=m

From Xc relationship (Constant Element): G2 — XE +B?=0
C

Or: G2 —X£C+ B2 + (L)Z = (L)Z

2Xc

e+ (5-57) - (75)
2X.)  \2X,

The above equation is a circle with center (0, i) and radius i

Cc Cc
From real part of the equation (variable), G must be always positive to give (because) R always
positive, so the admittance loci are half right circle.

- —_—
Y R=0 R increases
Y Locus Plane Z Locus Plane

3. A parallel RC circuit with Variable Xc

Fixing the resistance and change the capacitance will give straight line parallel to the imaginary axis
in the Y-plane (Impedance Locus) while it will be half lower circle in the Z-plane (Admittance Locus).

Also, it will be half upper circle in the current Locus.

o

R C = o

YV
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Y= ] + jowC and /1 = __;______ /tan™ ' (—wCR)
| i v o2
V 1+ (@CR)
JImY jimZ

4. Admittance Locus for two Parallel Branch Electric Circuits with One Variable Element:

The total admittance for the two parallel branch electric circuits equal to the sum of the individual

admittances for each branch as follows:
s — 1,1
Yr=Y1+4+Y2 Or ;?_214-22
So, the total admittance is any line from the origin to that point on the half circle. The resonance
points for the locus could be found by intersecting the locus with the real axis (G) (i.e., real part of
Yt), while the maximum and minimum points for the locus could be found by deriving the equation
of Yt with respect to the variable element in the circuit.

1B 4B
g a>1/2RL a=1/2RL a<1/2RL
o ] ] i max - - may.
‘Q/ G ‘\\ YL/(f n ./.
i Resonance ! Resonance
Point Points
- ]B . » }B :
-1/ XL a=1/Xp a<l1/Xp
a msssmem a --------
./ may < \
: S : ¢ max)
s Dy o KM o
Resonance Resonance
point point
4B 4 jB  Resonance 4B Resopaqce T
G Point G Pomts G R,
N 4 / \ \ V1
’ Hh‘““h s -—\_\ XL
9 . max - 1 | ST, max "~ max "~
a>1/2Rc a=1/2Re¢ a<1/2Rc
: . y Resonance
4B B4 Resonance B4 Poiuit
G Point G_ e C:
— - > — - -+ — -—
Bt (- T Yc .. JYc
\Dmax Y > max Y J max
ay ... Y afk===-
a>1/Xe a=1/Xc a<l/Xc

YA



AL-Mustansiriyah University Electrical Circuits Electrical Eng. Dep.

Note: In the previous circuits the resonance could be happened when the admittance locus intersects
the real axis (QG), then the total current will be in- phase with the total applied voltage. In the next

circuits there are no resonance case (the admittance locus does not intersect the real axis).

‘1'1:\'1"-'\'3 YT:YP'Y:

V1
| Ixm Xe2
Yr Yh Y-

5. Admittance Locus for Circuits with More Than Two Parallel Branches
The total admittance for these parallel electric circuits is equal to the sum of the admittances of each

branch. Also, the resonance may be happened or not depend on the intersection of the locus with the

real axis.
4B Yr=Y1+YatYs T 4B Yr=Y1+Y2+Ys T

. R, R3 Ry L R3
_,--—')’I \G Vr éR ’ ) Vr —_C2
Y1 A Ys | X X ’ ) X X3

Y-
) YT ¥a
4jB YT=Y1+Y2+Y3 T
):L*«_ (.;1 R3
i oS \ Vr
1 Yr -
Y, | X3
¥r i Y: Ys Yr i Y Y;
4B Yr=Y1+Y2+Y3+Y4 T
e - Ri R4
Y Y T 5 X
1 Y, /_-\ C: R> L3
‘:f‘ ------ \ s Xa Ac
L YT‘ TR
YT b ' Y2 Y3 Y

Note: The total impedance is the reciprocal of the total admittance for the circuit, and the total current,

power & power factor for the circuit could be implemented.

Y4
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Example:

For the circuit shown:

1. Derive an equation for suitable value of RL that give resonance at two points.

2. Find the value of “L” that makes the circuit in resonance?

3. Find the value of total impedance at resonance for the values found in point “2”?

Note: Explain the resonance using admittance locus.

F'y
Rc Ro
Vi 50 20
Y Xc
== | 20uF & Xr

®o=5000 rad/sec

Solution:
1. Fortwo points at resonance the radius of the circle must be greater than the
imaginary part of admittance locus {Y¢). B Resonance

1 Xe 1 {RA
.'.E;}Hé_l_xé o RL {E ;";4' Xc)

2. Draw the admittance locus with the following
points:
Y¢ is a straight line with 0.04 real part and 0.08
imaginary part.
Y, I1s half down circle with 0.25 radius and {0.25,0) center. The Y, locus is

drawn after the Y. locus end point as seen in the locus shown.

il ik
Xp=—=————=100
wl B00X20%10~8

- Fdre - o fimvmmdLY
7= Tc+dP3 1zs+4+xf)+f 128 4+x§)

At resonance the imaginary part equal to zero.
=i = XP- 125X, +4=0

125 44Xf
Or (A -0.33)(* -12.12)=0
At X =0330 =  L=0.335000=0.066mH
At X =1212Q =  Lo=12.12/5000=243mH

3 At X.=0 330 Yy, = 1—2; + 4+c023)2 =0520 = Zp = '17;_: =1.920
ALX=1212Q Yoo =1—§5+m= 0.053v = Zps = ﬁ: 18.8Q

Note: As shown there are two resonance points from the locus and by using
the equation of total admittance for the circuit seen by the source.
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Example:

For the circuit shown:

1.
2.

Find the value of “RL” that makes the circuit in resonance at Rc=10Q.

Find the value of “RL” that makes the circuit in resonance at Rc=4Q. If not, what changes
should be made in the circuit elements value?
Note: Prove the resonance using admittance locus.

T_ % Re Ro
AVE
YT Xc XL

—_— 50

jloQ

Solution:
1-YT=YC+YL= "ji+ RL

125  Rf+100

)+. 5 10 )
I\2s Ri+100

At resonance the imaginary part equal to zero.

5 10

125 RF+100

= Rf +100 =250

o Ry =12.25Q = Yy = 0.129v and Zy, = 7.75Q

R
2_YT=Y,:'+YL= i-|‘ = )

41 RI+100

4 fE 10 )
J\3T ™ Ri+100

At resonance the imaginary part equal to zero.

5 10
41 Rf+100

=5 RZ+ 100 = 82 or RZ= —18

. The resonance cannot be happened, to solve
this problem the value of X must be changed to
make the circuit work at resonance as follows:

1X50.12 =g =8.553
or X <8.3Q

0.04

Eezonance
Points
r

-0.06

0.1z

0.0

: i
0.03 Yo G

Y straight ine & Vi is
Citrcle Radins=123 =005

& 1B Center(0,-0.05)

nY

)
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Example:
The circuit shown work at resonance:

1. Find the values of “c”.
2. Draw the admittance locus.
3. Find the total current.

? Rr. Rc
Vr 50 40
10V

YT XL
| = 0.6mi 7 X

W=5000 rad/sec

Solution:

8 ) { 4 Fdtame( S g
1. Y =Vedai's (1a+x5 + 34) 7 (1a+x§ 34)

At resonance the imaginary part equal to zero.

Xe _ 3 Y =
o = A XE s A13X + 16 =0
S Xe=9.680Q
and c=1/500x9.68=20 6uF
- Xe=1650
and c=1/500x1.65=121pF
3. at Xc=9.680
Y01 = 16+(9.68)2 + 4 0.18v = 101 VYOl 1.84
at Xc=1.65Q
4 5
YOZ - m+ ; - 0.360 = 102 - VYOZ - 3.6A
iB Resopance
Pounts
0 14 g3
X 3 Y(::
009y o

2. Y1 straaightline & Yc 1s

Circle Radius=1/2Rc=0.125

Center (0.125,0)

Y'Y
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Example:
For the total admittance locus shown that represent an electrical circuit with two parallel branches,

find the value of each element in the circuit.
Note: Use the angular frequency ®=500 rad/sec.

4 1B
005"~ !
45°© i Y
h'd'e H
0.05 G
Solution:
T Re Ro
Vo
YT
= 7 Jn
From the locus we find that:
Y(- 0.05 + _j(,).()i:v 0.0707 Z£45°% v
e l 1414~ —4a5°0 =10 F1O)2

Yo
. From real and imaginary parts we found that:
Rc=100 and Xc=100

1 1

< — 200 F

owXc 500 <10
Again from the locus we find that:
Diameter=1/X_.=0.05uv > XL=202
. XL 20

L — 40mH

o 500
Example:

For the total admittance locus shown that represent an electrical circuit with two parallel branches.
The maximum value of real part of total admittance is equal to (0.5), what is the value and type of
each element in the circuit.

G
Solution:
T Ry, Rc
Vr
YT Xc
g X1 T

Yy
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From the locus we find that:
: x - + ! =0.5
Xc tan30° 2X.
Solving this equation for Xc we get: Xc=4.464Q
Again flrom (he1 locus lWe fﬂnd that:
]

Yy =o—"] x
T Xe \Xe  tan30° )
1 1 )

(1
Were i |__ x| i
X representing the real part of Y. and | X, tan30° ) representing

4

the imaginary part of Y.
Substituting the value of X¢ to get: Y =(0.224-j0.388)v

i ;:(1.933+j1.119)9= RL+ jX.

L

Example:

For the total current locus shown that represent an electrical circuit with two parallel branches, find
the value of each element in the circuit.
Note: Use the angular frequency ©=2000 rad/sec.

i
25,150l ) V .
25025078
Solution:
7, = ¥ = 25030 = 10.£45°Q = (7.07 + j7.07)Q2
I 25 _~150

. From real and imaginary parts we found that:
RL=7A[3<7§2 and X .=7.07C2
AL =""0 . JUE . g e R

o 2000
From the admittance locus we find that:

1 1 .
- — =0.12—45°0vL=(0.0707 + j0.0707
YL =7 " T Tlo-as° G 2 e

Radius=1/2Rc=0.0707v — Rc=7.07Q

1B
0.0707 G

e :' '\'(.\
0.0707L____

T Ry Rc
VT
Y :

Y¢
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Example:
For the total current locus shown that represent an electrical circuit with three parallel branches, find

the value of each element in the circuit.
Note: Use the angular frequency @=5000 rad/sec.

L=1 8435‘3@
: -
Ilzlsmp“/ v

1502-25°V

Solution

2, = = 1502 —250 —8.33.,15°Q = (8.05+ j2.16)Q2
1 182 —40

.. From real and imaginary parts we found that:

RL1=8.050 and X 1=2.16Q2

T T Xy 216 =0.433mH

g ) 5000
Vv 1502 — 259
o
A I :—184;‘;0 — 83/, —60 Q2=(4.16—37.22)Q

.. From real and imaginary parts we found that:
Rc=4.16Q and Xc=7.220
LC= ! = — 3 =27 Ik

oX. 5000x7.22

From the admittance locus we find that:
Diameter=1/X2=Im(Y2)-Im(Y1)=0.072v = X2=13.7Q
Using: Y1=1/Z4 and Y2=1/Z2

3.
L, =X 137 5 gamn
- [0 5000
oo72d T 3
A o
I 0.16 (at Ry12—0)
0.031
)
T Rc
N
YT
= TXC

Example:
Find the value of “Ri” which result in parallel for the circuit shown besides using the I- Locus

diagram. Also find the value of Imax, P.fimax, Imln and Pmax (maximum power dissipated).

&
12 LDO‘V Ry,
Xt
jlo

—-JSQ

Yo
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Solution

1200

1.4y ==——=12,53.1° = 0.72 + j0.96 = 0D + jAD

From the current locus we find that:
o

Feadlus—i .

2310
And by usmg Pywthagoras rule fortriangle (CDE):
DB = J(CB)Y — (CD)? = \/(0.6)° — (0.36)* = 0.484
Were: CD=AD-AC=0.96-0.6=0.36A
Again using Pythagoras rule for triangle (ADB):

|L20] =/ (AD)2 + (DB)? = \/(0.96)% + (0.48)% = 1.14

-1 KB _ -1 09% _ o
il ST 63.43

& = tan

 le=1.07332-63 43°A (is the current in the second branch at resonance)

= & W n (B __10
2.Ir=Vx [(100+ HE+1UU) T I TR RE+1UU)]
To get the maximum wvalue condition the above equation must be derived
with respect to the variable element in the equation, and equating it with

Zero.
dlr _ —R7+100 . 20Rp _ :
dR [(n§+1aa)2 }(HE+160)2]—U+}U
From real part R =102 (maximum) and from imaginary part R =0Q
{(minimum)

= o By ¢ "8 £ | -~ o
I = 1220° % [(m+m i =2}| = 1.368-15.255%4

Irmin = 1220°% x [(5) + j {55 — 15)] = 076 2-18.4%4

Prax=V x| misxX COS6= 12x1.368><005(0 15.255)=15.84W
Or Pmex= {Itmax ) XRe{Z tmax)=(1 368)°x8.463=15 84\W
P .fnax=C050nax=C0s0=1

Al
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Periodic Non-Sinusoidal Signals

v
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Periodic Non-Sinusoidal Signals

Any waveform that differs from the basic description of the sinusoidal waveform is referred
to as non-sinusoidal. The most obvious and familiar are:

D.C.

Square wave.
Triangular.

Sawtooth.

Rectified waveforms.

v AU v

(a) (b) (c)

(d) (e)

Common non sinusoidal waveforms: (a) dc; (b) square-wave; (c) triangular; (d)
sawtooth, (e) rectified.

A periodic function can be represented by an infinite sum of sine and cosine signals
(functions) which are related harmonically. The harmonic signals (waves) are generated
from the fundamentals signals with frequency multiplied by an integer number.

Signal or wave with frequency f; (@;) is called fundamental frequency. The ns harmonic
wave has a frequency of nw;.

e When n=2 it is called the second harmonic.
e When n=3 it is called the third harmonic.

Therefore, the non-sinusoidal wave can be represented by:
D.C.+ Fundamental wave+ Sum of harmonics.

that can be used to represent a non-sinusoidal periodic waveform. Or, in general
representation the equation of the instantaneous value is:

e(t) =ez.+e +ey+ . te,
e(t) = Vyo + Vypy sin(w it ¥ 0) + V,pp, sin(Qw, t ¥ @) + V5 sin(Bw,t ¥ B)
+ e+ Vppsin (nw t + @)
And

i(t) =1 + Ly, sin(w,t F 8) + I, sin(Qw,t ¥ @) + I,,,3 sin(Bw,t ¥ B)
+ o Lpsin (nw,t + )

Depending on the waveform, many these terms may be required to approximate the
waveform closely for the purpose of circuit analysis.

YA
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e The first term of the sine and cosine series is called the Fundamental Component.
It represents the minimum frequency term required to represent a particular
waveform, and it also has the same frequency as the waveform being represented.

e The other terms with higher order frequencies (integer multiples of the fundamental)
are called the harmonic terms.

v e T e
-~ Complex Wave

Fundamental

_ . nd .
Fundamental 2" Harmonic

st .
wt=c orl Harmonic

-
‘ N

/ \ /\ Harmonic
O\

3 Hdrmomc

VAVAY,

’/\ /\k /\\ ?‘/l\l\a:nomc
VALV/IAVARY,

Circuit Response to a Non-Sinusoidal Input

The general representation of a non-sinusoidal input can be applied to a linear network
using the principle of superposition. Recall that this theorem allowed us to consider the
effects of each source of a circuit independently. If we replace the non-sinusoidal input
with the general term representation necessary for practical considerations, we can use
superposition to find the response of the network to each term.

e The total response of the system is then the algebraic sum of the values obtained for
each term.

e The non-sinusoidal waves could be grouped into different frequency sine-wave
sources connected in series to the load . Each source supplies the load by a power
calculated using superposition theorem, and the total power is the sum of them.

Y4
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Ir=Leffect

-
Ry

e1 2> Pi,ea2Pre32>Ps3,...,en 2Py

The total power is Pr=P1 + P+ P53+ - + P,

(" \/E)Z (sz/ﬁ)z M

P = Vic + + + +
T -_ R R R man mEmomow R
R R 2R 2R 2R
, Ve Vg e V2,
Veff - Vdc + 2
Similarly:
20+ 12 + e 2
Ieff — Iéc + mil m2 2 mn
VZ
fr
PT = ; = IeszRL
L

The power dissipated as heat in a resistance due to non-sinusoidal wave depends on
constant current value. Assume this current as DC current give the same heat power at the
same time in the same resistance, it is equal the effective current value (non-sinusoidal).

Example: non-sinusoidal wave source has a voltage equation
(e=045sinept+0.18sin2wt) volt, applied on a series circuit contain (R1=1KQ)
and (Ro=4 7KQ). Find the voltage effective value on {4.7KQ2) resistor and the
current effective value in the circuit?

1

TKL2

© C) 4.7KC2
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Solution:
Rr =1x10% 4+ 47 x10% = 5.7 KQ
= ———Sinwt + ——— sin2wt
5.7%10 57x10

= 80sinwt + 60sin2wt HA
BOX107E)12 +(20x1078)2
Iw:Jc )2+  _ 60 ua

2
Vorrarx = LojrRy7x = 60 X107% X 47 x10° =028V

g

another way:

’ 045)2+(0.18)% Vv, 0.343

3
using VDR Vesrazie = Vesr X Razi 4.7%10

=0343 X —————=0.28V

Ry ppr+Rag 4.7%10341%103

Example: Find the active value of voltage and current, and the average power
for an electrical circuit if the voltage supplied =5
e=200+100cos{500t+30° 1+ 75cos(1500t+60°) v and the current  is:
i=3 53cos{500t+75°)+3 55cos(1500t+78.45°) A

Solution:

Lopr = f(3.53)2;-(3.55)2 — 3544

4 r4
Vers = J(ZUO}E 4 % — 218.66

Poe=200%xX0=0W
100 252

Py = ﬁxﬁcos(750 — 309 =1248 W
75,3258 2 _ 600% =
Py==x ﬁcos(78.45 607} = 1263 W

Pr=Pp+ P + P, =0+ 1248+ 1263 = 251.1 W

Example: Find the response of the circuit in Fig. below for first three terms of the input
shown.

e = 0.318E,, + 0.500F,, sin wt — 0.212E,, cos 2wt — 0.0424F,, cos
4ot + . ..

Ur
A
Vv
E R =60

wl

(b)

Solution: Converting the cosine terms to sine terms and substituting for £, gives us:
e = 63.60 + 100.0 sin @t — 42.40 sin(2ewt + 90°)

Using phasor notation, the original circuit becomes like the one shown below:

€Y
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+ Vg —

My
+| 1" 6Q 1, 5
E, = 636 V==

+
S o = 377 rad/s
E, = 1071V £0° @ £ 04 Hg

e
Zr

E, = 20.98 V £90° 2w = 754 rad/s
B +

N
I

The average power is
Py, = I3R = (10.60 A)}(6 2) = 6742 W
For the fundamental term (E, = 7071V £0°, @ = 377):

X,, = wL = (377 rad/s)(0.1 H) = 37.7 Q

Z, =60 + j37.7Q = 38.17 Q ~280.96°

E, 70.71 V £0°

Zr,  38.17 Q £80.96°

Ve, = (I; 20)(R £0°) = (1.85 A 2 —80.96°)(6 Q £0°)

11.10 V £ —80.96°

= (I, £6)(X,, £90°) = (1.85 A £ —80.96°)(37.7 Q £90°)
= 69.75V £9.04°

= 1.85 A £ —80.96°

-
t'q.
I

The average power is

P, = IR = (1.85 A)’(6 ) = 20.54 W
For the second harmonic (E, = 2998V £ —90°, @ = 754): The phase
angle of E, was changed to —90° to give it the same polarity as the input
voltages E; and E,.
X;, = oL = (754 rad/s)(0.1 H) = 754 Q
Z, =6Q + ;7540 = 75.64 (2 £8545°
E, 2998 V £ —90°
Z;, 75.64Q £8545°
Vg, = (I £0)(R £0°) = (0.396 A £—174.45°)(6 Q2 £0°)
= 238V £—174.45°
V,, = (I £0)(X,, £90°) = (0.396 A £—174.45°)(75.4 Q2 £90°)
=299V £~ —84.45°

= 0.396 A £—174.45°

The average power is

P, = I3R = (0.396 A)*(6 Q) = 0941 W

i = 10.6 + V2(1.85) sin(377¢ — 80.96°) + \/2(0.396) sin(754¢ — 174.45°)

and

I..= V(106 A)? + (1.85A)% + (0.396 A)? = 10.77 A

£y
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vp = 63.6 + V2(11.10) sin(377t — 80.96°) + \/2(2.38) sin(754¢ — 174.45°)

and

Ve,.. = V(63.6V)> + (11.10 V)? + (238 V)? = 64.61 V

v, = V2(69.75) sin(377t + 9.04°) + V2(29.93) sin(754t — 84.45°)

and Vi = V(69.75V)? + (29.93 V)2 = 7590 V

The total average power is

Py =I2.R = (10.77 A))(6 Q) = 69596 W = P, + P, + P,

Example:

a. Sketch the input resulting from the combination of sources in Fig. below.
b. Determine the rms value of the input.

AU = 4V + 6 sin wi

6 sin wf

xample:

The input to the circuit in Fig. below is the following: e =12 + 10 sin 2¢
a. Find the current i and the voltages vz and vc.

b. Find the rms values of i, vz, and vc.

c. Find the power delivered to the circuit.

Ur
M
i R =310
+
e C =%FF—-.L(

Solution:

a. Redraw the original circuit as shown, then apply superposition:

¢y
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AL-Mustansiriyah University

12V —m
L l 1
+ Ue Xp= — = =4 gl
A€ = 6C T 2 radls)EF)

10 sin 2¢

=

For the 12 V dc supply portion of the input, I = 0 since the capacitor is an open circuit to
dc when vc has reached its final (steady state) value. Therefore:
Ve=IR=0V and V- =12V

For the a.c. supply:
Z=3Q0—-j40 =58 £-53.13°

10
—V 20°
V2 2

— A £ +53.13°

_\1

E

o =S Th
2

(—? A Z1+53.13% (3.4} Z20°)

Ve = (I £68)(R 20°)
(&)
V £ +53.13°

AY,

3%

-

and
Ve = (I £8)(Xe £—90°) ( --T A /_+53,]3")(-l Q) £ —90°)

e

8
V £ —36.87°

V2
In the time domain,
i =0+ 2sin(2t + 53.13°)
53.139)

vp = 0 + 6 sin(2f +
ve = 12 + 8 sin(2r — 36.87°)
s . R AY =

[(0)* + = = VZA=1414 A

6V _
= = VI8V = 4243 V

]rms = \

Vkrms - \,.":(0)2 +

(8 V) P
V176 V = 13.267 V

~

Ve =/ (12V)* +

. 2
P=I:.R = (\j‘\) (30) =6W
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Example: For the circut shown, find the total cument 282

equation if the supply voltage s
e=50+20sin500t+ 10sin1000t V. Xe ?CLI
Solution: T—J 802 4 1200

DC: Iy = §= 104 (L is s/c & C is ofc)

fundamental:

Zp =5+ (j2//(—j8)}) = 5 + j2.667 = 5.667.228° Q
2047 o

V= Tt 3.53-28" A

2nd harmonic: X;, = 2X;, = 4Q & Xpy = Xzﬁ= 44}

(2]

10.0°
[+

Zr; =5+ (j4//(-ja} == Q  opencircut i;= =04

4 1=10+ 353sin{500t — 287} A

Example: Derive the current equation in each branch
and calculate the consumed power in the circuit if the
supplied currentis: i=10+4sin500t+2sin1500t A
Solution:

250 4mH
DC fepe=0A4&1;,-=104 T HE 3m

fundamental: X;;, =500 x4 x10%=2Q
o+
o = S00XZS0X10-6 80
4+j2

i1r = 4.0 x e 5—12,{4920 .-’T.—Iz
10-j8 i ==4Q

- _ o _ 0 =
Iy = 4£07 X 7— ) 3.362-15 -
3rd harmonic: X;, = 3X;, = 6 0 & Xpy = ic_i_ 2670 ot s
ap = 200 X —L— = 124297 A T I

14+_{‘3.33 (i L
iy = 2200 x —L28 — 1 4.-28.2° 4 .l:
18102
T

14+j323
i = 1.2sin(500t + 49.2%) + 1sin (1500t + 4297} 4
i, = 10 + 3.36 sin{500t — 15%) + 1.4sin (1500t — 28.2°34  *®

1 2V24(172 20" A I}": |i‘"
feers = /%: 1132 4 10 Zan

z -12.67Q =
fress = J(lg}z _}_w 103 A T ? 9]

Pr=P.+P = rcgffﬂc +1f Ry = (1132)% X 10 + (103)? x 4 = 4361 W

¢o
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The Transient Circuit Analysis

e
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The Transient Circuit Analysis

Whenever a circuit is switched from one condition to another, either by a change in the
applied source or a change in the circuit elements, there is a transitional period during
which the branch currents and element voltages change from their former values to new
ones. This period is called the transient.
After the transient has passed, the circuit is said to be in the steady state.
So, the general differential equation that describes the operation of any electrical circuit
will contain two parts, one for transient and another for steady state:

i(1)= il(t) + iss(?)

Where:

i(?) 1s the current as function of time.
i«(t) s the transient current.

iss(t) 1s the steady state current.

The Natural Response of R-L Circuit

e The natural response of a circuit refers to the behavior (in terms of voltages and
currents) of the circuit itself, with no external sources of excitation.

e A natural response or source free RC circuit occurs when its D.C. source is suddenly
disconnected. The energy already stored in the capacitor is released to the resistors.

Consider a series combination of a resistor and an initially charged capacitor, as shown

in Fig. below:

i v i
C R
l' + i

L

Since the capacitor is initially charged, we can assume that at time the initial voltage is
v(o)= Vo

ic=-1r
By definition, i = Cdv/dt and ip = v/R. Thus,

_du U

C— 4+ —= 1
dt R
duv v

— =0
dr RC

This is a first-order differential equation, since only the first derivative of v is involved.

To solve it, we rearrange the terms as:
dv 1
— = ——dt
v RC

Integrating both sides, we get:
In v = . In A
RC

Where /n A is the integration constant. Thus,

v I
Iy
A RC

Taking powers of e produces
i) = Aa WHE
But from the initial conditions, v (0) =4=V, Hence:
Y
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- —t/RC
() = Ve ™

O = W 2%

7= RC

The time constant (1) of a circuit is the time required for the response to decay to a
factor of 1/e or 36.8 percent of its initial value.
This implies that at ==

Voe ™/RE = Ve~ ! = 0.368V,

The voltage response of the R-C circuit is an exponential decay of the initial voltage.

oA

i""'[]

0.368V -~

0 T

—»-
I

e The rapidity with which the voltage decreases is expressed in terms of the time
constant.

e Figure below shows the effect of different values of time constant on natural response
of R-C circuit.

0 | 2 3 4 51
Also, we can find the current i(t):

ip(t) =

The power dissipated in the resistor is:

P = vig =

The energy absorbed by the resistor up to time ¢ is:

‘ Vi ..,
w = dx = —e Tdx
K d LR

Vil — e ™), = 0.

I drlj'_.

_ 1 .,
I — ©, wr(®) — 5CVp,
For R = 0

which is the same as the energy initially stored in the capacitor. The energy that was initially
stored in the capacitor is eventually dissipated in the resistor.

¢A
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Example: In Fig. below, let vc (0) = 15 V. Find v., v: and i, and for t>0.
80

A ‘ i
- + .+
5Q } 0.1F =/ v 12Q = o,

Solution: The equivalent resistance or the Thevenin at the capacitor terminals.

20 X 5 _
Reg = =40
20 + 5

ch v = 0.1F

The time constant is:
T = chC = 40.1) = 04s

Thus,

- t/T = —1/0.4 5, = 2.5t s
v = v0)e /" = 15¢7 /% v, Ve = U = l5e V

From Fig. 7.5, we can use voltage division to get v,; so

12
v, = ———v = 0.6(15¢ ) = 9¢ 2V
' 12 + 8
Finally,
: i —2.5¢
Iy = = 0.75e¢ A

p)

Homework: For the circuit in Fig. below. Let vc(0) = 60V. Determine vc, vx and i, for
t>0.

o 80
L -L . WO Y N
12 Q ) 6Q = 1F == o
] | _ c

Example: The switch in the circuit in Fig. below has been closed for a long time, and it is
opened at t=0 sec. Find v(?) for t>0. Calculate the initial energy stored in the capacitor.

t=0
3Q 73 1 Q
N |

20V (+) 90 v ——20mF
Solution: For t<0, the switch is closed; the capacitor is an open circuit to dc, as represented

in Fig. below.
30 1Q

W l WYY -;_
20V (F) 00 = ve(0)

[ 1 -

Using voltage divider rule:
£9
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9

- (20) = 15V, <0
9 3

l’(“(f} =
iy ]

Since the voltage across a capacitor cannot change instantaneously, the voltage across the

capacitor at t<0 is the same at t=0 or:
ve(0)y = Vi = 15V

For t>0, the circuit will be as shown below:

1€
o | AN

! +
9Q 2 V=15V = 20mF

| !

Reg=1+9=100Q
The time constant is:
T=R,C=10X20X 1077 =025
Thus, the voltage across the capacitor for t>0 is:
v(f) = ve(0)e ™ = 15¢7/02y
v(t) = 15¢ >V
The initial energy stored in the capacitor is

J

]

1 > 1 - -
we(0) = ZCuvE(0) = = X 20 X 10 o 85T =—= 30

The Natural Response of R-L Circuit
Consider the connection of a resistor and an inductor, as shown in Fig. below.

1, R, L R3:

e For ¢ <0, the inductor L is short and carries a current s, while Ry and R carry no

current.
e For ¢t > 0, the inductor current decreases and the energy is dissipated via R.

Our goal is to determine the circuit response for ¢ > 0, so, the circuit reduces to:

' - > +
LEw  RIu
L + = _
L
The inductor has an initial current or i(0)= Iy. Applying KVL around the loop:
vy +vp =0

But v, = Ldi/dt and vp = iR. Thus,

di
L— 4+ Ri=0
dt



AL-Mustansiriyah University Electrical Circuits Electrical Eng. Dep.

or

di K.

——ig= =g =]

dt L
Rearranging terms and integrating gives

[‘ di ("R
S = — il
$ 0 L
B Rr | : RI1
In i = —— = Ini() —Inlyp = ——+ 0
Io L 0 &
or
ir) Ri
n = —
Io L

Taking the powers of e. we have
- Rt/I
i() = Ipe

This shows that the natural response of the R-L circuit is an exponential decay of the initial
current. The current response is shown in Fig. below.

i(r) A

Tangent at t =0
P

0.3681,

.'”e’""'

i

Lo |

The time constant for the R-L circuit is:

The time constant of a circuit is the time required for the response to decay to a factor of
1/e or 36.8 percent of its initial value with 1 again having the unit of seconds.

fl:” = I(]E,’_IfT

The loop current i(£) will drop to e! (37%) of its initial value /o within one time constant t.
It will be <0.011/p after elapsing 5t. If i(¢) is approximated by a linear function, it will vanish
in one time constant.

We can find the voltage across the resistor as:
pill) = IR=IRe V"

The power dissipated in the resistor is:
p = vgi = IjRe

—2¢/T

o)
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The energy delivered to the resistor during any interval of time after the switch has been

opened is:
i t
/pd.t = ffﬁRE'J[R-""r'“dx
SO 0

1 .
—-";.R 1 — —2{R/Lt
RIL) IR( — e )

I ) ¥ )
= SLIGA — 20, 1 =0,

w

Example: The switch in the circuit of Fig. below has been closed for a long time. At t=0,
the switch is opened. Calculate i(t) for t>0.

20 5/ o

l‘ i)
(F)aov =120 =16Q = 2H
o - A

T e

Solution: When the switch is closed, and the inductor acts as a short circuit to dc. The
resistor is short-circuited; the resulting circuit is shown in Fig. below.

i i i
R e

o | S o

120

|

s0v ()

p—

4 > 12 i
= 3.}
4+ 12
40
iy = = 8 A
2+ 3
12 .
i(f) = iy =6A, <0
12+ 4

i(0)=i0 )=06A

When t > 0:
4 _Ll
| FES
120 <’ 160 f 2H
| ] |
Req=(12+4)[16 = 80
The time constant is:
L 2 1
T=——=_"=—8§
Rq 8 4
i(n = i(0)e /™ = 6e ¥ A
Homework: For the circuit shown below, find i(t) for t>0.
r=0
=3 [ |
‘»; 12 O { 8 Q
: :

S2e0 s, |

oy
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R-C Transients: Storage Cvcle
Consider the R-C circuit in Fig. below:

Electrical Eng. Dep.

r=0
1 -
‘-; {i:;l [y zr

T

Since the voltage of a capacitor cannot

We assume an initial voltage ¥y on the capacitor.
change instantaneously:

v(07) =vO") =V,

cirh
dt R
E v V

=t =
dt RC RC

Rearranging terms gives

dv v —V,
£ R
or
duvu - dt
B W | B

Integrating both sides and introducing the initial conditions,

wir) r

r
In(lv — V) =T e—
, RC
Vo 0
; . : 1
In(v(z) — V) — In(Vp — V) = ~RC + O
or
g — ¥, t
o e ——
Vo — V¥V, RC
Taking the exponential of both sides
B — W Yy .
e T e 3 T RC
Vo — Vs
o — Vi = (Wo— Ve~
or .
v(t) = Vo + (Vg — Ve /7, 7 =0
Thus,
Vo- <0
v(r) = —t/T -
Ve, + (Vg — Ve : >0
v(f) A
‘(.; ___________________
SR ) N
0 t
If Vo=0 volt, then:
) 0, r << 0O
v{r) = gt "
Vil — e ™), r=>0

oy
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) _dv C it
) =C—=—Ve ™", 7 = RC. I =0
dt T
z( F) M
|
0 r
()
Pr) M
v L
R
0 r

(b)
Response of an R-C circuit with initially uncharged capacitor: (a) voltage
response, (b) current response.

Example:
The switch in Fig. below has been in position 4 for a long time. At the switch moves to B.

Determine v(t) for t>0 and calculate its value at =1 s and 4 s.
3 kQ A B 4kQ

24V () 5kQ= v =——05mF (F)30V

Solution:For the switch is at position 4. The capacitor acts like an open circuit to dc, but
v is the same as the voltage across the resistor. Hence, the voltage across the capacitor just

before is obtained by voltage division as:
S

5+ 3

Using the fact that the capacitor voltage cannot change instantaneously,
v(0)=vO )=vO07)=15V

(D ) = (24) = 15V

For the switch is in position B. The Thevenin resistance connected to the capacitor is and
the time constant 1s:
3

T=RmC=4X10°X05X%X10"3=2s

Since the capacitor acts like an open circuit to dc at steady state,
v(e) = 30 V. Thus,

v(t) = v(®) + [v(0) — v(®)|e "
= 30 + (15 — 30)e /2 = (30 — 15¢" ) V

Att = 1,
v(l) = 30 — 15¢7 9% =209V

v(d) =30 — 15¢ 2 =2797V

o¢
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R-L Transients: Storage Cvcle

The changing voltages and current that result during the storing of energy in the form of a

magnetic field by an inductor in a dc circuit can best be described using the circuit shown
below:

Electrical Eng. Dep.

R 7‘<'
"'-_-'h'-,-""-,"-'-\:
i
=0 l
o +
V., () L = vt
S\ =
i = i, + i
V.= Ri + :Lﬂ~
di
ili - —Ri + V, - —RI,-"_ V.
a~ L L\' R/
di —R{. V.
ar? = T(‘ - R)“
. _R - 1”.’:
di = T(f — E)ﬂrf
dt _Rein

i— (VJR) L

[_a k[,
Jr, x — (VJ/R) L Jo

Where o is the current at t=0 and i(t) is the current at any t>0.
i) — /R) R
"I —/R L

i) — (Vi/R) _

g — g (R/LX
Iy — (V/R)
. V. Ve rs
i)y = 5 + (ID = R)e (R
(1) A
I
s R s e o
AR
0 t
When the initial energy in the inductor Iy is zero, is zero.
ity = = _ Yo rypy
=5 & '

o0
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i)
r
:‘{r‘1=%r
Yol I
R I P
I G ) " R
0.632 —= |
I
R/
|
|
-'I |
/ ' | | | L
0 T 2T 3T LE, 5t

i)y = i(=) + [i(0) — i(se)]e /7

where i(0)) and i(o0) are the initial and final values of i, respectively.
e Ifthe switch is takes place at time t=to instead of t=0, then i(z) will be:

B i T
Y

i(f) = i(®©) + [i(ty) — i()]e” "

i =4 Vs =
—A4l = & ). F =0
R
di L L
i) =L— =¥ e T =— t 0
di TR R
i(r) A () A
| v
ﬁ 5
0 t ] I

Example:
Find i(?) in the circuit of Fig. below for t>0. Assume that the switch has been closed for a

long time.

t=0
i
20 3Q
T ,-/ -\. = ]
10V .\;/,l % 2= H

Solution:
When t<0 the 3Q resistor is short-circuited, and the inductor acts like a short circuit. The
current through the inductor at /=0 (i.e., just before t=0) is:
i(07) = ? = 5A
Since the inductor current cannot change instantaneously,
i(0)=i07)=i(0)=S5SA

When t>0 the switch is open. The 2Q and 3€ resistors are in series, so that:

o1
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) 10
i(oc) = — = 2 A
2 + 3

The Thevenin resistance across the inductor terminals is:

For the time constant,

1
I 3 1
T = —_ = = s
R 5 15
Thus,
i(f) = i(o©) + [i(0) — i(o)]e /™
=2+ — BT T =2 ¥ e A, :t > 0

Forced Response of Series R-L-C Circuit

The capacitor and inductor are initially uncharged and are in series with a resistor. When
switch S is closed at t = 0, we can determine the complete solution for the current.
Application of Kirchhoft’s voltage law to the Transient Response of RLC Circuit results in

the following differential equation.
' R ﬁ
V i) C T v,

di 1 .
V= Ri+ L —+ — |idt
! dr (‘j

-

By differentiating the above equation, we have

di d*i 1 .
e et O Py e St
¢ g di* C

LetD = %:
RDi+LD2i+é= 0
i(RD + L D? +%) =0
Since i not equal to zero at transient interval, then:
LD* +RD + % =0
The above equation is called the characteristics equation of the circuit. The solution of this

second order equation is:
—R + /RZ — 4TL
D1

2L
P P
D2 =
2L

Since the circuits has two roots then the general solution of second order differential
equation will be in the following form:
i(t) = AePlt + BeP?t
At t=0, i(0)=0 then:
0 = Ae® + Be®
So, A=-B

oy
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The circuit response depends on values of D1 and D2(real, imaginary, or complex) and

they depend on R? and %.

Casel: if R?> > % (Over Damped Case)
Here D1, D2 are real values.

di
prin AD1eP' + BD2eP?
At t=0:
di E
dt L
And A=-B
Sm%==AD1—AD2
. E
~ L(D1-D2))
5 E
~ L(D1-D2))
E
i(t) = D1t _ ,D2t
W=rpi-ppne —¢ )
1
| i
VA
\“\
// N\

\
Y

Case2: if R?> = % (Critically damped case)

D1=D2=D=—
2L
i(t) = (A+ Bt)el?
Att=0:i(0)=0and £ =%
dt L

0=(A+0)e°
So:
di—A(_R)+B
dt  \2L
B E
L
Then:

E
i(t =—tDt
i(t) Le

Case3: if R? < % (Under damped case)
Here, D1 and D2 are complex numbers.

p1=_%4; (R)3+1
—2r 7 \aL) TIc

oA
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p2=20 (Y,
2L 2L LC

Let: D1=a+jB, D2=a-j3

— _R 5o |_Ry, 1
o= 2L’ﬂ_ ZL) +LC
i(t) = Ae® e/t + Be%te=IFt
i(t) = e*(Clcospt + C2sinpt)
i A
.-f"“‘*u.ll
A £
_i IIl.._._.m- ."Il 1 £ i, N

o L LI ' t

Example:

For the circuit shown below:

If V=200 V, R=20Q2, L=10mH, C=100puF. Determine the time at which the current reach
its maximum value.
Solution:

_ 4x10%1073

R2=400, % = 21010 7 _ 400

100%107°

Then the circuit at critically damped case.

pl=p2=_%_ 20
T T 2L 21073

i(t) = (A + Bt)e?*

—1000

At t=0, i(0)=0, so A=0

i(t) = Bt eP*
Also, at t=0, a_E
at L "
i
— = BteP'D + eP'B
dt
== 200_3 = 2 * 10*Amp\sec.
L~ 10410
i(t) = 2 x 10%¢t ¢~1000¢
di
d_il: = —2 % 10*t * 1000e 71990t 4+ 2 % 10%e 1000t = 0

t=1msec (the current at its maximum value)

Switching Functions (Singularity Functions)
Switching functions are very useful in circuit analysis. They serve as good approximations
to the switching signals that arise in circuits with switching operations. They are helpful in

o9
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the neat, compact description of some circuit phenomena, especially the step response of
R-C or R-L circuits.

The three most widely used singularity functions in circuit analysis are:
® unit step.
® unit impulse
e unit ramp function.
The unit step function u(¢) is 0 for negative values of # and 1 for positive values of z.

ir) a

In mathematical terms.

0. r<<o0
u(r) = :
1L t >0

(i — fn) M

] —
0. t < g
uir — fp) — -~
1. r = Iy

~y

I

wif + .r.[]j A

0, < —1p
u(t + rr;.] = | -

-~y

We use the step function to represent an abrupt change in voltage or current, like the
changes that occur in the circuits of control systems and digital computers. For example,

the voltage:
0, <t
v(f) ={ ; e
Vo. I = Iy

may be expressed in terms of the unit step function as:
() = Voul(t — 1y)
A voltage source ofVo u(t) is shown in Fig. (a); its equivalent circuit is shown in Fig. (b).

It is evident in Fig. (b) that terminals a-b are short circuited (v =0) for # < 0 and that v= V)
appears at the terminals for t>0.
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1=0

—————Oa ’— L— a

+ - e— 1/'“

Vou@) (*

» b

':h

(a) (b)

For Similarly, a current source of Iop u(t) is shown in Fig. (a) below, while its equivalent
circuit is in Fig. (b) below. Notice that for t<0 there is an open circuit (i = 0), and that i =

1o flows for ¢ > 0.
t=0

o a J o a

Iou(r) fl — Iy "‘

O !’

o b
(a) (b)

The derivative of the unit step function u(t) is the unit impulse Function &(t) which we

write as:

(1) 4 (==) 0 << 0
d ) - i

(D = —u@ = Undefined, f— 0

a 0 e

f

0

The unit impulse function 8(¢) is zero everywhere except at = 0, where it is undefined.

Example:

In Fig. below, the switch has been closed for a long time and is opened at ¢ = 0. Find i(?)

and v() for all time.

10 Q i

VWV VYV ]
N T
» F (X)wov

"
\

30u(n) V

—1 +

Solution:
The resistor current i can be discontinuous at t=0 while the capacitor Voltage v cannot.

Hence, it is always better to find v and then obtain / from v.
Of the unit step function:

<

0, r =<0
30u(ty = 5. N
30, r =0

Then for t<0, the circuit will be as shown:

1)
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o _°,
< f|~"+ ,L
200Q = v :'\%. 10V
v
v =10V, i=——=—1A
10
Since the capacitor voltage cannot change instantaneously,
v(0)=v0 )=10V
For t>0:
o
0V (+) 200Q= wv=—1F
\'-IV'/ T’ _
2
(0) = —————(30) = 20V
- 20 + 10
The Thevenin resistance at the capacitor terminals is
R, = 1020 _10x20 20,
™ - 30 3
and the time constant is:
R C 20 5
T = = e — = — 5
b 3 4 3
Thus,
v(r) = v(ee) + [v(0) — l*(‘f-)lc’_”fr
= 20 + (10 — 20)e @/ = (20 — 10e 2 v
v dv
i=—+ C—
20 dt

— 1 — 0Se™ ™ L D2AS(—O0 66— 1D ™ =11 + & A

10 V.
l‘ e i
(20 — 10e 9% v,

—1A,
(1 + e 79 A,

VA

o O

i

-~ -~
\/ A
VAR AN
-

Homework:
a) When the switch is closed in the circuit shown in Fig. below, the voltage on the capacitor
is 10 V. Find the expression for v, for t >0.

b) Assume that the capacitor short-circuits when its terminal voltage reaches 150 V. How
many milliseconds elapse before the capacitor short circuits?

+ =0
10VA=5uF v, 10k 7i, silglﬂkﬂ.

1y
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The Use of Laplace Transform in Transient Analysis

R-L-C circuits are modeled by differential equations whose solutions describe the total
response behavior of the circuits. We now introduce the powerful method of Laplace

transformation, which involves turning differential equations into algebraic equations,

thus greatly facilitating the solution process.
When using phasors for the analysis of circuits, we transform the circuit from the time

domain to the frequency or phasor domain. Once we obtain the phasor result, we

transform it back to the time domain. We use the Laplace transformation to transform the
circuit from the time domain to the frequency domain, obtain the solution, and apply the

inverse Laplace transform to the result to transform it back to the time domain.

Given a function f(¢), its Laplace transform, denoted by F(s) or is defined by:

~ o0

L"I_f[f)l = F(5) = f“(!}e—xrdr
where s is a complex variable given by:

S — —+ j(_!_i

¢ Since the argument st of the exponent e in above Eq. must be dimensionless, it follows
that s has the dimensions of frequency and units of inverse seconds or “frequency.”

e The Laplace transform is an integral transformation of a function f'(¢) from the time
domain into the complex frequency domain, giving F (s).

A companion to the direct Laplace transforms in above Eq. is the inverse Laplace
transform given by:

LHUFGE] =) =

Example:
Determine the Laplace transform of each of the following functions: (a) u(z), (b) ¢™ u(t),

and (c) §(¢).
Solution: _(a) For the unit step function u(t), shown in Fig.(a), the Laplace transform is:

- oo

i | )
Llu(t)] = le ' dt = —;e_“
Jo

oo

0

| | I
= ——(0) + —(1) = —
5 A 5

(b) For the exponential function, shown in Fig.(b), the Laplace transform is:

Lle “u(n)] = e e dt

-
[ I {:_,—'[.'.'—0—{4’}: _ 1

s + a o 5+ a
(a) For the unit impulse function, shown in Fig.(c):

1y
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==

LI8(n] = SWe dt =e %=1
‘o
u(r) A e “u(r) &(n)
1
] p— 1
0 r ) 4 0 r
(a) (b) (c)
Laplace transform pairs.*
Jr) Fi(s)
o(1) 1
1
u(r) —_—
5
e al ]
3+
1
I >
5
o n!
r n+1
re ar 1
(s + a)
n ar ’1!
i (s + ﬂ)"+’
- (3]
sin wt — =
5 + w”
5
cos wl — —
S T w

sinfwt + )

cos(wt + )

e “sin wt

e “cos wt

s sinf® + w cos@

> »
5+
s cosf — w sinf
2 2>
Al =
w
X > >
(s +a)y + w
s+ a

(s + a')2 + w?

*Defined fort = 0; f(t) = 0, fort <

0.

Some Properties of the Laplace Transform

Linearity

If Fi(s) and Fa(s) are, respectively, the Laplace transforms of f;(?) and f>(2), then:
ﬁ[ﬂ]f]{f]l -+ azfj[r}l = HIF]{S} + HEFEIS}I

Scaling

If F(s) is the Laplace transform of f'(¢), then:
. _1,(s
[fan] = —F| &

Given that F(s) is the Laplace transform of f'(¢), the Laplace transform of its derivative is:
LIf(n] = sF(s) — f(0O)

Time Differentiation

¢
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Time Integration
If F(s) is the Laplace transform of f'(¢), the Laplace transform of its integral is:

L’.[JF

0

1
f{.x}d_x} = ;F{s}

Initial and Final Values Theorems
The initial-value and final-value properties allow us to find the initial value and the final
value of f(¢) directly from its Laplace transform F(s).

f(0) = lim sF(s)
§—»00

1) = lim SF)
The Inverse Laplace Transform
Steps to Find the Inverse Laplace Transform:
1. Decompose F(s) into simple terms using partial fraction expansion.
2. Find the inverse of each term by matching entries in above Table.

Applications of the Laplace Transform in Circuit Analysis

Steps in Applying the Laplace Transform in circuit analysis:

1. Transform the circuit from the time domain to the s-domain.

2. Solve the circuit using nodal analysis, mesh analysis, source transformation,
superposition, or any circuit analysis technique.

3. Take the inverse transform of the solution and thus obtain the solution in the time
domain.

we transform a circuit in the time domain to the frequency or s-domain by Laplace
transforming each term in the circuit.

For a resistor, the voltage-current relationship in the time domain is:
v(r) = Ri(r)

Taking the Laplace transform, we get

Vis) = RI(s)

For an inductor,

di(t)
dt

v(r) —

Taking the Laplace transform of both sides gives

Vi(s) = L|slI(s) i(0)] = sLI(s) Li(O )
or
0 )
I(s) = ——Vi(s) + —
5
ECE) I(s)
| — . —_—
o—— o 1
i(0) = sL
o (1) 1 =r Vis) |
(S Lio)
{a) (b}
(s
——
t
) = s () 90

(c)
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du(r)
dt

i) =C

which transforms into the s-domain as

I(s) = C|sV(s) — v(0 )] =

sCV(s) — Cv(0 )

or
Vis) 1 s) + v(0)
s) = —I(s
sC
i(f) I(s) 1(s)
_— —_— —_—
O o O
4 ks 3 | k
+ T 5 +
! - = sC | - )
o) v =/—C V(s) V(s) C T l\t/' Cv(0)
- () z(0) il ]
&/
(a) (b) (c)

If we assume zero initial conditions for the inductor and the capacitor, the above equations

reduce to:
Resistor: V(s) = RI(s)
Inductor: V(s) = sLI(s)
. : |
Capacitor:  V(s) = —I(s)
S
i(r) I(s)
—— —_—
o— o—
- -
»(1) =R V(s) = R
o | o— |
(a)
it I(s)
—_— —_—
O O
- +
(1) S L V(s) =3 sL
o— | o
(b)
i(0) I(s)
—— ——
O— o———
- +
1 c 1 1
v(r) — Vis) ~— sC
(c)

N
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Example:
In the circuit of Fig. below, the switch moves from position a to position b at t=0. Find i(z)

for t>0.
da
:.?%\:0 R
ghe o b Jr(!l
I, @58
o (1) \L 3.
&V,
Solution:
The initial current through the inductor is i(0)=lp . Using mesh analysis:
R
A, |-1
_ = sL
1'._.1'0 I,/ :F\.: ﬁjb J:;
I — P
&/ Li,
|
1”0
IS (R + sL) — LI, — 3 = 0
or
Liu ",u l'“ ‘fﬂ'/i‘
I(s) = + = +
R + sL s(R + sL) s + R/L s(s + R/L)
P Vo/R  V,/R
s+ R/L s (s + R/L)
Vr} —tf V(:
i)y =1, — — e "7 + —. r=0
inr) ( c R )CJ R
Example:

Consider the circuit in Fig. below. Find the value of the voltage across the capacitor if the

value of vs(2)=10u(t) and assume that at t=0, -1A flows through the inductor and is +5V
across the capacitor.

10
Ly

“ﬂ\'- ;‘ -

v (F) E5H =0.IF
5
Solution:

m -
3 Q v,

|/--

“|3
e

p
g
U
~
==
M
-
=
S’

— |+
L
1=

e
’— | 1l
=
o
=X

—'(-I-I-

N/
‘e
S

1y
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Vi, — 10/s N Vi—0 N i(0) Vi, — [v0)/s]
10/3 Ss 5 1/(0.1s)

or
2 T
0.1(s+3+~)v. — =+ —+05
Y ) S

where v(0) = 5V and i(0) = —1 A. Simplifying we get
(s> +3s +2)V, = 40 + Ss
or
40 + 5s 3 30
(s + 1)(.&‘+2}:s+ 1 =+

h

V[z

[§8]

Taking the inverse Laplace transform yields

vi(t) = (35¢ " — 30e yu(n) Vv

Example:
Find v,(?) in the circuit of Fig. below. Assume v,(0) =5 V.

10 Q

Vi

- ]
wetunv () 100 S @ ==01F (4) 2594

Solution:

We transform the circuit to the s-domain as shown in Fig. below. The initial condition is
included in the form of the current source:
Cvo(0)=0.1( 5)=0.5A

SITQI?’; 14}51,:f|_“; %% [% 05A \%Dza

We apply nodal analysis. At the top node:

10/(s + 1) -V, V, V,
+2+05=—2+
10 10 10/s
or
1 2V SV 1
+25 = + = —V,(s + 2)
s+ 1 10 10 10
Multiplying through by 10,
+ 25 =Vy(s + 2
= S +2)
or
25s + 35 A B

":(s——l)(s+3):s+1+s+3

1A
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where
A= (s 4+ DV(5) |s=—1 :ﬂ :E: 10
' G+2) l=0 1
25s + 35 —15

B = (s + 2)Vy(s) |s=—

Il

I

Il
p—t
wh

(s+1) L= —1
Thus,

10 15
Vols) = +

s+1 s+ 2

Taking the inverse Laplace transform, we obtamn
vo(f) = (10e " + 15¢ u(H V

Homework:
Find vo(?) in the circuit shown in Fig. below. Note that, since the voltage input is multiplied

by u(?), the voltage source is a short for t<0 all and i.(0)=0.
10

30e2up) v (7)) 2HS 20 32 v

S

—id

‘|' .

Homework:
The initial energy in the circuit of Fig. below is zero at t=0. Assume that vi=15u(t) V
(a) Find V,(s) using the Thevenin theorem.

(b) Apply the initial- and final-value theorems to find v,(0) and vo(0).
(c) Obtain vo(t).

—_—

Iy 1Q 1”1'-
".r-'._.'-.."‘.‘ | |
+ 4L

v 3 %320 S 4,
—_ o~ W
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