Selected F.T Pairs:

f(t)	$F(\omega)$	
$e^{-at}u(t)$	$\frac{1}{a+j\omega}$	
$te^{-at}u(t)$	$\frac{1}{(a+j\omega)^2}$	
$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}$	
sgn(t)	$\frac{2}{j\omega}$	
$\frac{j}{\pi t}$	$sgn(\omega)$	
u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$	
$\delta(t)$	1	
1	$2\pi\delta(\omega)$	
$e^{\pm j\omega_o t}$	$2\pi\delta(\omega\mp\omega_o)$)
$cos\omega_o t$	$\pi[\delta(\omega-\omega_o)+\delta(\omega+\omega_o)]$	
$sin\omega_o t$	$-j\pi[\delta(\omega-\omega_o)-\delta($	$(\omega + \omega_o)$]
$A\prod(t/ au)$	$A\tau Sa\left(\frac{\omega\tau}{2}\right)$	Rectangular pulse
$A \wedge (t/\tau)$	$A\tau \left[Sa\left(\frac{\omega\tau}{2}\right)\right]^2$	Triangular pulse

Rayleigh's Energy Theorem.

It corresponds to Parseval's power theorem but concern with energy of non-periodic signals.

$$E = \int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(\omega)|^2 d\omega$$
 (2-18)

Ex 2-9:

Find the ratio of Energy up to the first zero crossing point to the total energy for the rectangular pulse of amplitude A and width τ .

Solution:

$$E_t = \int_{-\infty}^{\infty} |f(t)|^2 dt = \int_{-\tau/2}^{\tau/2} A^2 dt = A^2 \tau$$
 joule

The first zero crossing point for $A\Pi(\tau/T)$ occurs at $\omega = \frac{2\pi}{\tau}$ rad/sec

H.W:

Calculate the ratio of energy of the frequency range (10 \rightarrow 20) Hz up to total energy for the signal $f(t) = \begin{cases} |t|, & -0.5 < 0 < 0.5 \\ 0, & else\ where \end{cases}$

System:

A group of objects that can interacts harmoniously and combined in a manner intended to achieve a desired objective.

Liner system:

The system that satisfies the following: If $g_1(t)$ is the output when $f_1(t)$ is the input and $g_2(t)$ is the output when $f_2(t)$ is the input, then, when the input is $f_1(t) + f_2(t)$,

the output would be $a_1 g_1(t) + a_2 g_2(t)$.

System Impulse Response:

When an input signal is applied to a system, then the output would be;

$$g(t) = f(t) * h(t) = \int_{-\infty}^{\infty} f(\tau)h(t - \tau) d\tau$$

where h(t) is called the impulse response of the system, h(t) is found by applying $\delta(t)$ at the system input, where the output would be h(t),

g(t) = h(t) when the input is $\delta(t)$.

Ex 2-10:

Determine the impulse response of the system shown below.

Solution:

Let
$$f(t) = \delta(t)$$

$$y(t) = \delta(t) - \delta(t - t_o)$$

$$g(t) = \int_{-\infty}^{t} y(t')dt' = \int_{-\infty}^{t} [\delta(t') - \delta(t' - t_o)]dt'$$

$$h(t) = u(t) - u(t - t_o)$$

Ex 2-11:

Find the output of the system shown below:

Solution:

$$h(t) = \delta(t) - \delta(t - 2) \qquad A$$

$$g(t) = f(t) * h(t)$$

$$= \int_{-\infty}^{\infty} f(\tau)h(t - \tau)d\tau$$

 $f(t) = A \sin \pi t u(t)$

$$= \int_{-\infty}^{\infty} [A \sin \pi \tau \, u(\tau)] [\delta(t-\tau) - \delta(t-2-\tau)] \, d\tau$$

$$= \int_{-\infty}^{\infty} A \sin \pi \tau \, u(\tau) \delta(-(\tau-t)) d\tau - \int_{-\infty}^{\infty} A \sin \pi \tau \, u(\tau) \delta(-(\tau-(t-2))) d\tau$$

$$= A \sin \pi \, t \, u(t) - A \sin \pi (t-2) \, u(t-2)$$

$$\therefore g(t) = \begin{cases} 0, & t < 0 \\ Asin\pi t, & 0 \le t \le 2 \\ 0, & t > 2 \end{cases} \qquad g(t)$$

<u>H.W:</u>

Find the output of the following system (plot the waveforms)

1)

2)

Step response

The output of the system when the input is unit step u(t).

$$h(t) = \frac{d}{dt}[g_u(t)]...$$
 (2-20)

System Transfer Function:

It is the F.T of the system impulse response

$$H(\omega) = F[h(t)] \qquad (2-21)$$
Using the time convolution property of Fourier transform, we have:
$$G(\omega) = F(\omega).H(\omega)$$

$$G(\omega) = F(\omega).H(\omega)$$

The amplitude and phase spectrum for g(t) would be:

$$|G(\omega)| = |F(\omega)|.|H(\omega)|$$
 ... (2-23)

$$\theta_g(\omega) = \theta_f(\omega) + \theta_h(\omega)$$
 ... (2-24)

Equivalent Frequency Transfer Function:

Cascaded Series:

(2-22)

Parallel:

$$F(\omega)$$
 $H_1(\omega)$
 $G(\omega)$

$$H_{eq}(\omega) = H_1(\omega) + H_2(\omega) \quad ... (2-26)$$

Feedback:

Ex: 2-12:

Calculate the energy of input and output signal for the system shown below:

Solution:

For the input signal

$$E_f = \int_{-\infty}^{\infty} |f(t)|^2 dt$$
$$= \int_0^{\infty} e^{-10t} dt = 0.1 joule$$

For the output signal

$$E_g = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(\omega)|^2 d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(\omega)|^2 |H(\omega)|^2 d\omega$$
$$e^{-at} u(t) \iff \frac{1}{a+j\omega} \Rightarrow F[e^{-5t} u(t)] = \frac{1}{5+j\omega}$$
$$E_g = \frac{1}{2\pi} \int_{-5}^{5} \frac{1}{25+\omega^2} d\omega = 0.05 \text{ joule}$$

<u>H.W</u>:

A signal $f(t) = 2e^{-at}u(t)$ is applied to the input of system have frequency transfer function $|H(\omega)| = \frac{b}{\sqrt{\omega^2 + a^2}}$ determine the required relations between the constants a and b such as exactly 50% of the input energy on a 1-ohm basis, is transferred to the output.