$$S_n(\omega) = 2kTR$$
 volt²/Hz (two sided) ... (3-10) b
 $S_n(\omega) = 2kTG$ amp²/Hz (two sided) ... (3-10) c

where:

T= Temperature of the conducting medium in Kelvin ($k^{o} = C^{o}+273$)

k =Boltzmann's constant =1.38 x 10^{-23} joule/ k^o

h = Blank's constant = 6.625×10^{-34} joule.sec

- For frequencies above $\frac{kT}{h}$, it is no longer white.
- At 290 k°, $\frac{kT}{h}$ =600 GHz.
- An ideal L&C has no thermal noise.

Thermal Noise Power:

The thermal noise power in a resistor R can be found either using voltage model or current model.

Voltage model:

$$\overline{V_n^2(t)} = \frac{1}{2\pi} \int_{-2\pi B}^{2\pi B} 2kTRd\omega = 4kTRB \text{ volt}^2$$
(or $4kTB$ watt) ... (3-11)
(3-11)
(Noise r.m.s noise voltage= $\sqrt{\overline{V_n^2(t)}}$ volt

Current model:

Ex 3-1:

Calculate the rms noise voltage arising from thermal noise in two resistors 100 Ω and 150 Ω at T=300 °k and a bandwidth of 1 MHz:

a) Connected in series

b) Connected in parallel

Solution:

a)
$$\overline{v_n^2(t)} = 4kTRB v^2$$

 $= 4kTB(R_1 + R_2) = 4 \times 1.38 \times 10^{-23} \times 300 \times 10^6 \times (100 + 150)$
 $= 4.14 \times 10^{-12} \text{ volt}^2$
 $V_n rms = \sqrt{\overline{v_n^2(t)}} = 2.3 \ \mu\text{v}$
b) $\overline{v_n^2(t)} = 4kTGB \ \text{amp}^2$
 $= 4kTB(G_1 + G_2)$
 $= 4 \times 1.38 \times 10^{-23} \times 300 \times 10^6 \times (\frac{1}{100} + \frac{1}{150})$
 $= 2.76 \times 10^{-16} \ \text{amp}^2$
 $i_n rms = \sqrt{\overline{v_n^2(t)}} = 0.0166 \ \mu\text{A}$
The equivalent parallel resistance $R_{eq} = \frac{1}{G_1 + G_2} = 60 \ \Omega$

 $n_i(t)$

:. $V_{rms} = i_n rms \times R_{eq}$ =(0.166*10⁻⁶)*60 =0.997 µV

Transmission of Thermal Noise through Linear System

• In General

$$S_{no}(\omega) = S_{ni}(\omega)|H(\omega)|^2 \qquad \dots (3-13)$$

$$\mathbf{H}(\boldsymbol{\omega}) \qquad \mathbf{H}_{\mathrm{o}}(\mathbf{t}) \qquad \mathbf{H}_{\mathrm{o}}$$

Noise Power at System Input:

$$\overline{n_{l}^{2}(t)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S'_{n}(\omega) d\omega \qquad \dots (3-14)$$

$$\overline{n_{o}^{2}(t)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S'_{no}(\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} S'_{ni}(\omega) |H(\omega)|^{2} d\omega \qquad \dots (3-15)$$

When R_{eq} is the input resistance of the system

$$R_{eq} = Re[Z_{in}] \qquad \dots (3-19)$$

<u>Ex 3-2</u>:

Find the rms noise voltage across $1 \mu f$ capacitor over the entire frequency band, when the capacitor is shunted by 1000 Ω resistor maintained at 300 °k.

Solution:

$$V_{\rm rms} \operatorname{across} C = \sqrt{V_{no}^2(t)}$$

$$\overline{V_{no}^2(t)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2kTR_{eq} |H(\omega)|^2 d\omega$$

$$Z_{in} = \frac{R}{//\frac{1}{j\omega c}} = \frac{\frac{R}{j\omega c}}{R + \frac{1}{j\omega c}} = \frac{R}{1 + j\omega R c}$$

$$R_{eq} = Re[Z_{in}] = \frac{R}{1 + \omega^2 R^2 C^2}$$

$$\overline{V_{no}^2(t)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2kT \frac{R}{1 + \omega^2 R^2 C^2} d\omega$$

$$= \frac{kT}{\pi} \int_{-\infty}^{\infty} \frac{R}{1 + \omega^2 R^2 C^2} d\omega = \frac{2kT}{\pi c} [tan^{-1}(\omega R C)]_0^\infty$$

$$= \frac{kT}{c} = \frac{1.38 \times 10^{-23} \times 300}{10^{-6}} = 4.14 \times 10^{-15} \ volt^2$$

$$V_{rms} = 0.0645 \mu v$$

H.W:

A resistor of resistance R=1000 Ω is maintained at 17 °C and it shunted by 100 μ H inductor. Determine the rms noise voltage across the inductor over a frequency bandwidth of:

i)	15.9 kHz	Ans: 182 x10 ⁻⁹ volt
ii)	159 kHz	Ans: 9.22 x10 ⁻⁸ volt
iii)	1590 kHz	Ans: 2.34 x10 ⁻⁶ volt

2- Sky noise (Additive noise):

It is referred to cosmic noise and galactic noise. It is added to modulated signals that use the free space as a transmission channel such as AM, FM, ...signals. The well-known of probability distribution of this type of noise is Gaussian (AGWN

Additive White Gaussian Noise). Its power is usually computed from the power spectral density function $S_n(\omega)$.

<u>Ex 3-3:</u>

An AM signal of 50 watt power is transmitted in a frequency range 100-103 kHz in a transmission channel. If the additive noise power spectral density (two-sided) in a transmission channel is 1μ watt/Hz. Find the signal-to-noise ratio in the transmission channel.

<u>H.W 3-2:</u>

Compute SNR for the previous example if PSD of noise is not white and given by 10^{-6} f watt/Hz. (what is the conclusion you obtained for this colored noise assumption as compared with white case?).

Problem Sheet for Noise

Q1: Two resistors R_1 , R_2 are both at a temperature T. Determine the required relationship between R1 and R2 if the *rms* thermal noise voltage across the series combination is twice that across the parallel combination.

Ans: $R_1 = R_2$.

Q2: Two resistors connected in series and at differing temperature are shown below.

- (a) Derive relations for the noise equivalent resistor and temperature R_{eq} , T_{eq} .
- (b) Calculate R_{eq} , T_{eq} for the specific case where:
 - $R_1 = 1k\Omega$, $R_2 = 2k\Omega$, $T_1 = 300^o k$, $T_2 = 390^o k$

$$\begin{bmatrix} R_1, T_1 \\ R_2, T_2 \end{bmatrix} = \begin{bmatrix} R_{eq}, T_{eq} \\ R_{eq}, T_{eq} \end{bmatrix}$$
Ans: (a) $\frac{R_1 T_1 + R_2 T_2}{R_1 + R_2}$, (b) $T_{eq} = 360^o k$

Q3: Two: identical resistors at a temperature T are connected to an ideal inductor as shown below:

- (a) Derive an expression for the thermal noise voltage spectral density developed across each resistor.
- (b) What is the mean-square noise voltage across each resistor within the noise bandwidth B.

Q4: A system has input resistance of 4 k Ω and transfer function:

 $H(\omega) = 8/(5 + j\omega)$ find:

- (a) The impulse response of the system.
- (b) The thermal noise power at system input and output.
- **Q5:** Calculate signal-to-thermal noise ratio at the input and output of the network shown below, if the *PSD* of the input signal is:

 $S_f(\omega) = \pi^2 \delta(\omega - 10) + \pi^2 \delta(\omega + 10)$ watt/Hz, and $T = 290^o k$, assume bandwidth= 10 kHz.

Q6: An AM signal of 50 *watt* power is transmitted in a frequency range 200 - 210 kHz in a transmission channel with power spectral density shown in figure. below. Calculate signal-to-noise ratio in the transmission channel.

