
Q17: A modulating signal f (t) shown besides AM modulates a carrier with modulation index = 0.5, find:

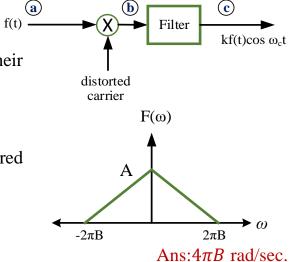
- a- Total power.
- b- Sideband power.
- c- Carrier power.

Q18: A certain message having $\frac{\overline{f^2(t)}}{|f(t)_{min}|^2} = 0.09$ is transmitted through a channel having PSD $(10^{-7}w/Hz \text{ watt/Hz}.$

If the signal power at receiver input is 0.1 watt and the signal bandwidth is 3 kHz, find:

(a) SNR_{dB} at Rx input if AM/ DSB – SC Mod. Is used.

(b) 2-SNR_{dB} at Rx output if standard AM Mod. With m = 0.5 is used.


Ans: 28.23 *dB*, 11.66 *dB*.

- **Q19:** A DSB SC receiver shown in figure below. The channel noise PSD is $\eta/2$ with $\eta = 10^{-7}$. The PSD of the modulating signal f(t) is shown in the other figure:
 - $f(t)\cos \omega_{c}t + n_{i}(t)$ $f(t) + n_o(t)$ Idial LPF (a) Determine the receiver output noise power S. $2\cos\omega_{\rm c}(t)$ (b) Determine the receiver noise $S_{f}(\omega)$ output power No. (c) If the output SNR is required to х be at least30*dB*, determine the ()minimum value of (x) and -8000π 8000π corresponding power of (t).


Q20: For an AM channel with noise PSD $S_n(\omega) = 10^{-8} watt/Hz$. (two-sided), if the receiver output SNR is required to be at least 33*dB*. Determine the transmitted power if the modulating signal is a single tone with peak amplitude of 0.1 volt and with frequency of 1 *kHz*.

Ans: 9.9 *m* watt.

- Q21: The figure below shows a DSB –SC modulator. The carrier available at the multiplier is a distorted sinusoid given by $a_1 cos \omega_c t + a_2 cos^2 \omega_c t$. The spectrum of f(t) is shown in fig. shown:
 - (a) Determine the signals and sketch their spectra at points b&c.
 - (b) What kind of filter is required in fig?
 - (c) What is minimum value of ω_c required for this scheme to work

Q22: Show that the scheme shown in fig. Below can be used to generate DSB-SC signal. Assuming that f(t) is a signal bandlimited to B Hz, find the signals and sketch their spectra at points a, b, c and d. Explain the nature of filter in this figure.

Q23: An Am communication system with m = 0.707 operates in the presence of white noise with two- sided power spectral density $0.25 \times 10^{-14} watt/Hz$,

and with total path losses of 90 dB. The input bandwidth is 10 kHz. Calculate the minimum required carrier amplitude of the transmitter for a 10 kHz sinusoidal input and 40 dB output *SNR*. Assume that resistance level is one ohm.

Ans: 63.254 volt.

Q24: A signal f(t) is bandlimited to ω_m . If it is frequency translated by multiplying it by the signal $\cos \omega_c t$. Find ω_c so that the bandwidth of the transmitted signal is 1 percent of the carrier frequency ω_c .

Chapter 5

Angle Modulation

Introduction:

It is a type of CW modulation in which the angle of a sinusoidal signal (either frequency or phase) in proportion to the message where amplitude is constant. It gives a high degree of noise immunity by band expansion; it is also wide use in high fidelity music broadcast, also having a constant envelope.

 $\emptyset(t) = A\cos\theta(t)$ "Angle Modulation

 $\phi(t) = f(t)\cos(\omega_c t + \theta_o)$ "Amplitude Modulation"

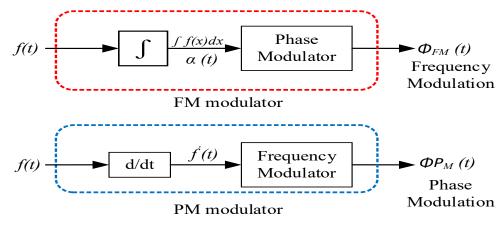
Where $(\omega_c t + \theta_o)$ represents the angle of carrier frequency

For PM

 $\theta(t) = \omega_c t + \theta_o + k_n f(t)$ $\theta(t)$ Where k_p is constant (rad/volt) $\theta(t)$ If $\theta_0 = 0$ ω_ct+θο ...(5-1) $\theta(t) = \omega_c t + k_p f(t)$ θ_{0} ...(5-2) $\phi_{PM}(t) = A_c cos \big[\omega_c t + k_p f(t) \big]$ Im The instantaneous frequency $\omega_i(t)$ is: $\omega_i(t) = \frac{d\theta(i)}{dt} = \omega_c + k_p f'(t)$...(5-3) Re

103

For FM

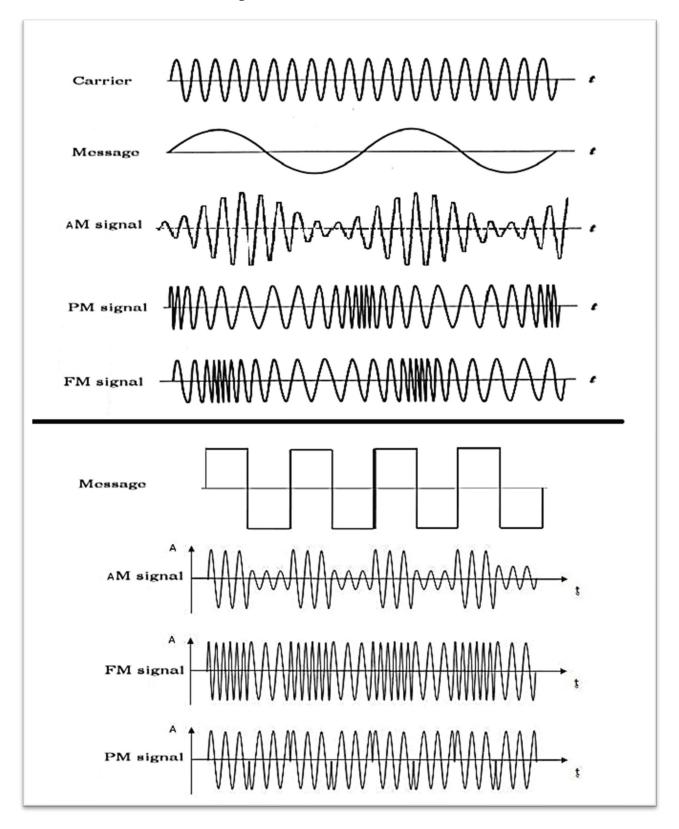

$$\omega_i(t) = \frac{d\theta(i)}{dt} = \omega_c + k_f f(t) \qquad \dots (5-4)$$

Where k_f is constant $\left(\frac{rad/sec}{volt}\right)$ modulation constant

$$\theta(t) = \omega_c t + k_f \int_{-\infty}^{t} f(\alpha) d \alpha \qquad \dots (5-5)$$

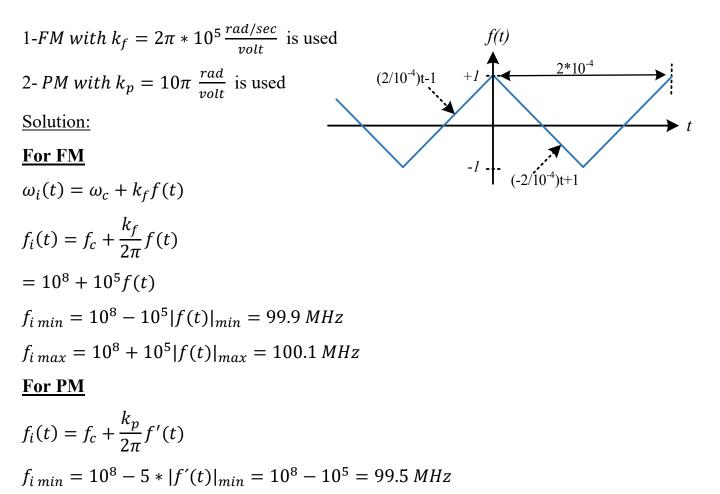
$$\phi_{FM}(t) = A_c \cos\left[\omega_c t + k_f \int_{-\infty}^t f(\alpha) d\alpha\right] \quad \dots (5-6)$$

We note from $\phi_{PM}(t)$ and $\phi_{FM}(t)$ that FM and PM are similar [PM corresponds to f(t) and FM corresponds to f'(t)]. Where the frequency is the derivative of the phase, or it represents the rate of change in phase.


<u>H.W</u>

Write the equation for $\phi_{AM}(t)$, $\phi_{FM}(t)$ and $\phi_{PM}(t)$, if the modulating signal is;

$$1 - f(t) = 2\cos 300\pi t + 4\cos 600\pi t$$


$$2 - f(t) = 2t$$
, at $0 < t < 1$ msec

Comparison of time waveforms

<u>Ex 5-1</u>

Find maximum and minimum instantaneous frequencies resulting from modulating a carrier signal with carrier frequency of $f_c=100$ MHz by f(t) shown if:

 $f_{i max} = 10^8 + 5 * |f'(t)|_{max} = 10^8 + 10^5 = 100.5 MHz$

Power of Angle Modulated waves:

Simply from equations:

$$Pt_{FM} = Pt_{PM} = \frac{A_c^2}{2}$$
 Watt ...(5-7)
(assuming R=1 Ω , if R is given then $Pt = \frac{A_c^2}{2R}$