
x		Bessel-function order, n															
ß	Jo	J	<i>J</i> ₂	J ₃	J ₄	I _s	J ₆	J ₇	Js	J,	Jro	J ₁₁	J ₁₂	J ₁₃	J ₁₄	J ₁₅	J ₁₆
0.00	1.00	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
0.25	0.98	0.12	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
0.5	0.94	0.24	0.03	_	—	_	—	_	—	_	—	_	-	_	_	_	—
1.0	0.77	0.44	0.11	0.02	_	_	_	_	_	_	_	_	_	_	_	_	—
1.5	0.51	0.56	0.23	0.06	0.01	_	_	_	_	_	_	_	_	_	_	_	—
2.0	0.22	0.58	0.35	0.13	0.03	_	_	_	_	_	_	_	_	_	_	_	—
2.41	0	0.52	0.43	0.20	0.06	0.02	_	_	_	_	_	_	_	_	_	_	_
2.5	05	0.50	0.45	0.22	0.07	0.02	0.01	_	_	_	_	_	_	_	_	_	_
3.0	26	0.34	0.49	0.31	0.13	0.04	0.01	_	_	_	_	_	_	_	_	_	_
4.0	40	0 7	0.36	0.43	0.28	0.13	0.05	0.02	_	_	_	_		_	_	_	—
5.0	18	33	0.05	0.36	0.39	0.26	0.13	0.05	0.02	_	—	_	1	_	_	_	—
5.53	0	34	13	0.25	0.40	0.32	0.19	0.09	0.03	0.01	—	_		_	_	_	—
6.0	0.15	28	24	0.11	0.36	0.36	0.25	0.13	0.06	0.02	—	_	_	—	—	_	—
7.0	0.30	0.00	30	17	0.16	0.35	0.34	0.23	0.13	0.06	0.02	_	_	_	_	_	—
8.0	0.17	0.23	11	29	10	0.19	0.34	0.32	0.22	0.13	0.06	0.03	_	_	_	_	—
8.65	0	0.27	0.06	24	23	0.03	0.26	0.34	0.28	0.18	0.10	0.05	0.02	_	_	_	_
9.0	09	0.25	0.14	18	27	06	0.20	0.33	0.31	0.21	0.12	0.06	0.03	0.01	_	_	—
10.0	25	0.04	0.25	0.06	22	23	01	0.22	0.32	0.29	0.21	0.12	0.06	0.03	0.01	_	—
12.0	0.05	22	08	0.20	0.18	07	24	17	0.05	0.23	0.30	0.27	0.20	0.12	0.07	0.03	0.01

Table of Bessel function

Bessel function first kind

<u>Ex. 5-3</u>

A given FM transmitter is modulated with a single sinusoid. The output for no modulation is 100 watt, into a 50 Ω resistive load. If the power provided for the first sideband is made zero, find:

- a) Carrier power.
- b) All sidebands power.
- c) Average power in second order sidebands.

Solution:

$$P_{1} = 0 \Rightarrow J_{1}(\beta)^{2} = 0 \Rightarrow J_{1}(\beta) = 0, \therefore \beta \cong 3.8$$

a) $J_{1}(\beta) = 0$ at $\beta \cong 3.8$
 $P_{c} = \frac{1}{2}A_{c}^{2}J_{0}^{2}(\beta) = P_{t}J_{0}^{2}(3.8) = 16$ watt
b) $P_{s} = P_{t} - P_{c} = 100 - 16 = 84$ watt
c) $P_{2} = 2\left[\frac{1}{2}A_{c}^{2}J_{2}^{2}(\beta)\right] = 2 \times 100 \times J_{2}^{2}(3.8) = 34$ watt

<u>H.W</u>

A carrier signal given by $10 \cos 2\pi \times 10^8 t$ volt is FM modulated by single tone message $4 \cos 2\pi \times 10^3 t$ volt if the modulation constant is $1000 \frac{Hz}{Volt}$,

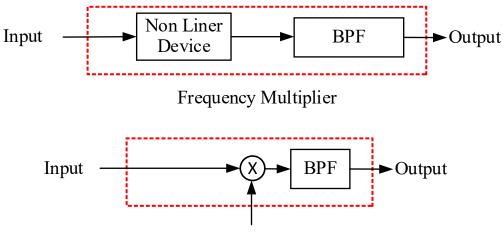
- a) Compute max. frequency deviation and deviation ratio.
- b) Write the equation of modulated wave.
- c) Sketch the spectrum.
- d) Calculate sidebands carrier and total power.

Generation of Wideband FM signals

1- Indirect method (Armstrong Method)

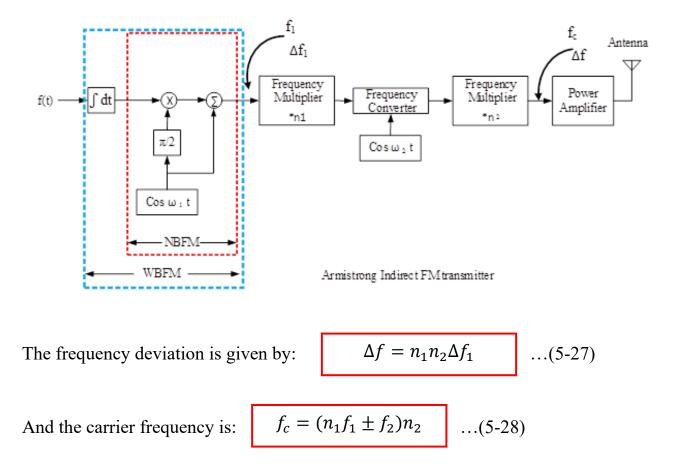
In this method, a NBFM signal is first generated with small β (modulation index) then increased using frequency multiplier (nonlinear device and BPF).

$$e_{i}(t) = A_{c} \cos(\omega_{c}t + \beta \sin\omega_{m}t)$$
$$e_{0}(t) = ae_{i}^{2}(t)$$
$$= aA_{c}^{2}\cos^{2}(\omega_{c}t + \beta \sin\omega_{m}t)$$


= $(\frac{1}{2})aA^{2}[1 + \cos(2\omega_{c}t + 2\beta sin\omega_{m}t]]$, where ω_{c} and β are doubled.

Using a nonlinear device with I/O c/cs:

$$e_0(t) = a_0 + a_1 e_i(t) + a_2 e^2(t) + \dots + a_n e^n(t)$$


Then we will have $n\beta$, i.e. WBFM,

But we also have $n\omega_c$. Therefore we use <u>frequency convertor</u> to control the value of ω_c .

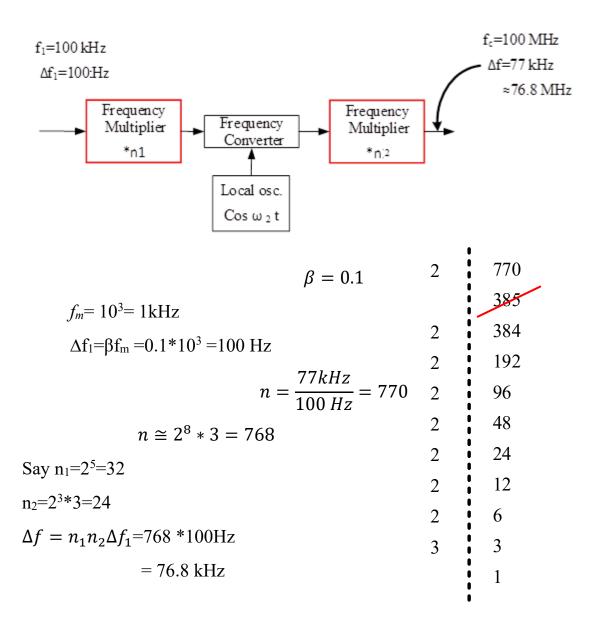
 $\cos \omega_1 t$

Frequency Converter

Practically the value of Δf_1 is 25 Hz, in order to maintain $\beta \ll 1$ (as required in NBFM), the balanced spectrum range from 50 Hz to 15 kHz (audio frequencies).

$$\beta = \frac{\Delta f}{f_m}$$
, at $f_m = 15 \ kHz \Rightarrow \beta = \frac{25}{15k} = 0.00167$
at $f_m = 50 \ Hz \Rightarrow \beta = \frac{25}{50} = 0.5$, Worse possible case

The two values of carrier frequency due to positive and negative signs are compared with the FM band [88 MHz to 108 MHz], so we choose the value which lies in that range.


The values $n_1 \& n_2$ are chosen such that they can be generated using doublers and triplers I cascaded more easier practically (ex. 64 = 2*2*2*2*2*2, 48 = 2*2*2*2*3,)

<u>Ex 5-4</u>

Consider the signal $2\cos(2\pi \times 10^5 t + 0.1\sin 2\pi \times 10^3 t)$ is used to generate WBFM with Δf no more than 77 kHz, and f_c of 100 MHz.

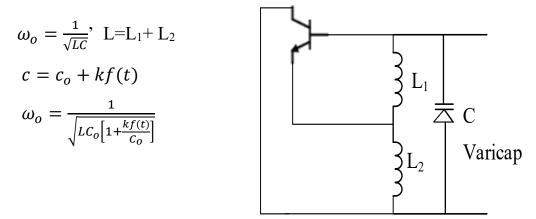
- a) Design a circuit of Armstrong transmitter.
- b) Determine an estimate of BW of both signals.

Solution

 $f_c = (n_1 f_1 \pm f_2) n_2$

Since $n_1n_2f_1=768 *100 \text{ k}=76.8 \text{ MHz}$ which is less than f_c (100 MHz).

The sign in above equation is +, i.e:


 $f_c = (n_1 f_1 + f_2) n_2$ 100*10⁶=(32*100*10³+f_2)*24 f_2=33.2 MHz.

a) BW_{NBFM}=2f_m=2 kHz

 $BW_{WBFM}=2\Delta f=153.6 \text{ kHz}$

2- Direct Method

Using simple LC oscillator by varying either C or L, depending on the message signal, the frequency generated is ω_c . e.g. Hartly oscillator.

$$\omega_o = \frac{1}{\sqrt{LC} \left[1 + \frac{kf(t)}{c_o}\right]^{1/2}} \cong \frac{1}{\sqrt{LC_o}} \left[1 + \frac{kf(t)}{2C_0}\right], \quad \text{when } \frac{kf(t)}{C_0} \ll 1$$

Using binomial $(1 + x)^n \cong 1 + nx$ for $x \ll 1$

$$\omega_o = \omega_c \left[1 + \frac{kf(t)}{2C_0} \right] \qquad ; \omega_c = \frac{1}{\sqrt{LC_o}}$$
$$\omega_o = \omega_c + k_f f(t) \qquad \dots (5-29)$$

$$; k_f = \frac{\omega_c k}{2c_o} \qquad \dots (5-30)$$

Demodulation of FM Signals

1- Direct method (Discrimination)

Using differentiator and envelope detector

 $\hat{\boldsymbol{\Phi}}_{FM}\left(t
ight)$ Envelope $\pmb{\Phi}_{FM}\left(t
ight)$ d/dt f(t) detector Discriminator f(t) In fact, the discriminator changes $\Phi_{FM}(t)$ the FM signal into AM with only the slight difference that the new carrier frequency has some frequency $\vec{\Phi}_{FM}(t)$ variation. Envelope of

 $\vec{\Phi}_{FM}(t)$