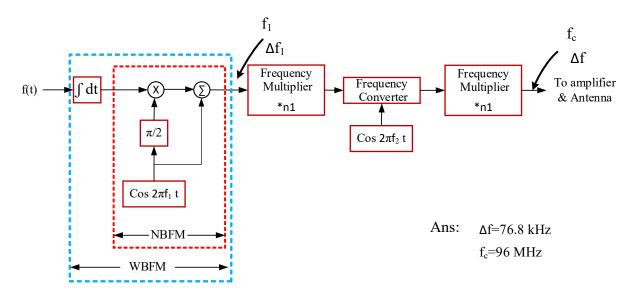
$\alpha = 1 \text{ v}, f_m = 1 \text{ kHz}$	2 kHz	40 kHz
$\alpha = 2v$, $f_m = 1 \text{ kHz}$	2 kHz	$80 \mathrm{kHz}$
$\alpha = 1 \text{ v}, f_m = 2 \text{ kHz}$	4 kHz	80 kHz

Identify the type of angle modulation used (FM or PM Narrowband or wideband) for systems A and B.

Ans: system A: NBFM or NBPM System B: WBPM.

- Q17: Design commercial FM transmitter using Armstrongs' method. The final output is required to have carrier frequency of 91.2 MHz and Δf in the range of 75 kHz. Assume $f_1 = 200$ kHz and $\Delta f_1 = 25$ Hz.
- Q18: Compute the carrier frequency f_c and the peak frequency deviation Δf of the output of the FM transmitter shown in fig. below [indirect (Armstrong) FM transmitter]. If: $f_1 = 200 \ KHz$, $n_1 = 64$, $f_2 = 10.8 \ MHz$ $n_2 = 48$, $\Delta f_1 = 25 \ Hz$



Q19: An angle modulated signal given by:

$$\emptyset(t) = A\cos[\omega_c t + 2\cos 60 \pi t + 5\cos 40 \pi t] \text{ with } f_c = \frac{\omega_c}{2\pi} Hz$$

- (a) Find the maximum phase deviation in radian.
- (b) at $t = \frac{1}{30}$ sec., find the instantenous frequency deviation.

Ans: (a) 7 rad. (b) 86.6 Hz.

- **Q20:** A communication system operates in the presence of white noise with two sided power spectral density $S_n(\omega) = 0.25 \times 10^{-14}$ watt/Hz and with total path losses (including Antennas) of 100 dB. The input bandwidth is 10 *KHz*. Calculate the minimum required carrier power of the transmitter for a 10 *KHz* sinusoidal input and a 40 dB output S/N ratio if the modulation is:
 - (a)AM (DSB LC), with m = 0.707 and m = 1.
 - (b) FM, with $\Delta f = 10 \ kHz$ and $\Delta f = 50 \ kHz$
 - (c) PM, with $\Delta\theta = 1$ radian and $\Delta\theta = \pi$ radian.
- **Q21:** A FDM system uses SSB SC modulation and FM main carrier modulation. There are forty (40) equal bandwidth voice input channels, each bandlimitted to 3.3 kHz. A 0.7 kHz guard band is allowed between channels and below the first channel:
 - (a) Determine the final transmission bandwidth if the peak frequency deviation is 800KHz.
 - (b) Compute the degradation in signal to noise of nput No.40 when compared to the input No.1 (Assume a white main spectral density to the discriminator and no deemphasis).

Ans: (a) 1.92 MHz (b) 36 dB.

Q22: Prove that NBFM requires the same transmission bandwidth as the AM.

Chapter 6

Pulse and Digital Modulation

Sampling Theorem:

A signal band limited to B Hz by regularly-spaced samples, provided sampling rate is at least 2B sample per second.

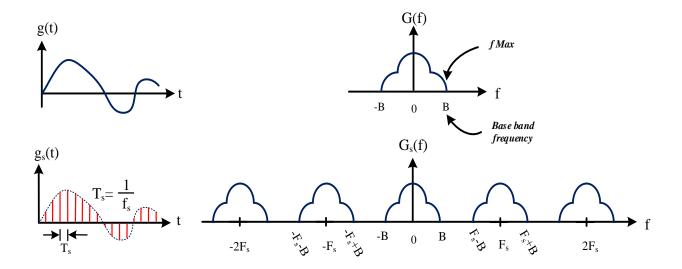
$$F_s \ge 2B$$

Or

$$F_s \ge 2f_{max}$$
...(6-1)

 $F_s = 2f_{max}$

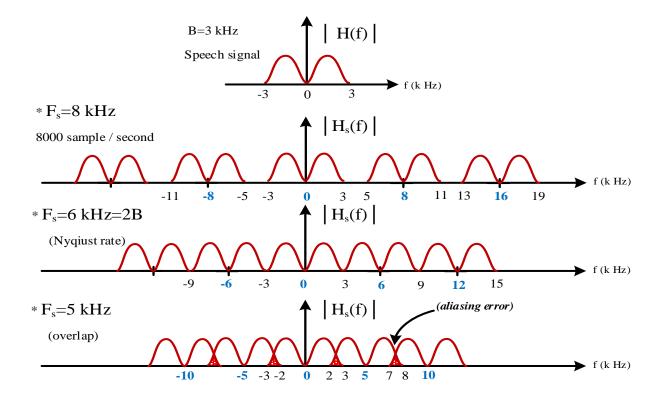
Minimum sampling rate or Nyquist sampling rate ...(6-2)



$$g_s(t) = g(t) \sum_{n=-\infty}^{\infty} \delta(t - nT_s) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} g(t) e^{jn\omega_s t}$$

$$G_s(\omega) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} G(\omega - n\omega_s)$$

Effect of sampling on a signal spectrum:



Ex 6-1: Determine the Nyquist rate of the sampling for the signal:

$$g(t) = 10\cos 100\pi t + 15\cos 150\pi t + 5\cos 300\pi t$$

Solution:

$$f_{max} = \frac{300\pi}{2\pi} = 150 \; Hz$$

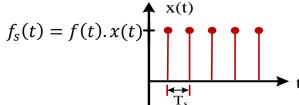
$$Nyquist\ rate = 2f_{max} = 2 \times 150 = 300\ Hz$$

H.W:

Determine the Nyquist rate of sampling required for

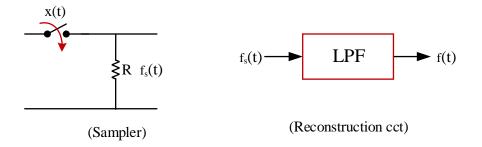
- a) $g(t) = 10 \cos 100\pi t \cos 200\pi t$
- b) $g(t) = e^{-2|t|}$ (approximate the BW where $|G(\omega)|$ drops to value less than 0.1)

The sampler behaves exactly as a multiplier. It multiplies f(t) by a gating function x(t) which is a train of impulses with frequency f_s then,



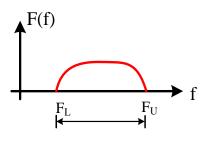
Reconstruction of f(t) from fs(t) is

done using LPF with cutoff f_{max}



Note:

If f(t) is a baseband signal over a frequency range f_L to f_u such that $B = f_u$ - f_L then sampling theorem of such signals states that f(t) can be completely recovered from $f_s(t)$ if:



 $f_S = \frac{2f_u}{k}$, where k is the largest integer not exceeding $\frac{f_u}{B}$

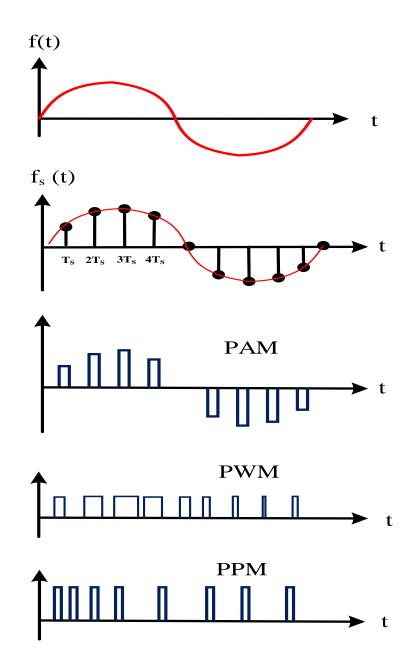
Ex 6-2:

For the signal shown besides, $F_s = \frac{2*(25)}{k}$ where $k = \frac{15}{k}$ int $\left(\frac{25}{10}\right) = 2$ $f_s = \frac{2 \times (25)}{2}$ or $f_s = 25$ kHz

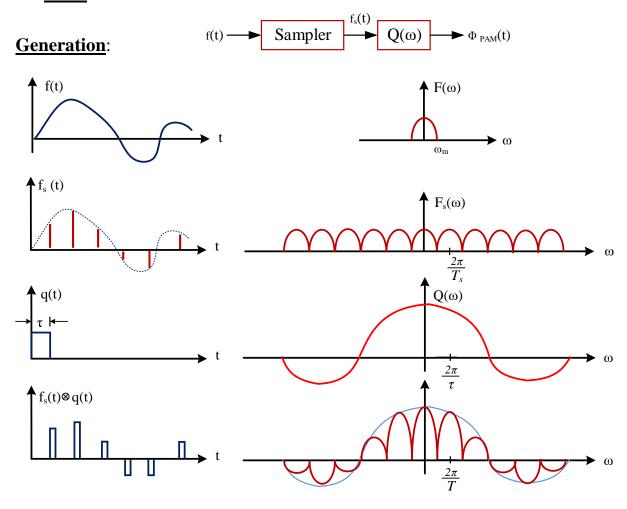
Reconstruction in such case has done using BPF

Pulse Modulation Techniques:

If an analog signal is sampled, the sampled values may be used to modify certain parameter of a periodic train pulses (amplitude, width or position). Accordingly, we have Pulse Amplitude Modulation (PAM), Pulse Width Modulation (PWM) or Pulse Position Modulation (PPM).



1- <u>PAM</u>



Pulse Amplitude modulation the same as the output of the sampled at rate f_s ($f_s \ge 2f_{max}$ for baseband signals).

$$\emptyset_{PAM}(nT_s) = \sum_{n=-\infty}^{\infty} f(nT_s) q(t - nT_s) \qquad \dots (6-3)$$

PAM is usually used as TDM-PAM (TDM=Time Division Multiplexing) to transmit more than one message at the same channel.

Detection:

$$\Phi_{PAM}(t)$$
 \longrightarrow LPF \longrightarrow $Q^{-1}(\omega)$ \longrightarrow $f(t)$