The output SNR:

$$\frac{S_o}{N_q} = \frac{3L^2\overline{f^2(t)}}{f_p^2} \qquad \text{Volt}^2 \qquad \dots (6-8)$$

Note:

$$N_o = N_q$$
; $\frac{S_o}{N_o} = \frac{S_o}{N_q}$

• For tone modulation: $\overline{f^2(t)} = \frac{A^2}{2}; \quad f_p = A$

$$\frac{S_o}{N_q} = \frac{3L^2}{2} \qquad \dots (6-9)$$

$$\left(\frac{S_o}{N_q}\right)_{dB} = 1.76 + 20 \log L = 1.76 + 6.02 n \qquad \dots (6-10)$$

Bandwidth Requirement of PCM

The information rate of PCM channel is nf_s bits/sec, if message bandwidth is f_{max} and the sampling rate is $f_s (\geq 2f_{max})$ then nf_s binary pulses must be transmitted per second.

Assuming the PCM signal is a low-pass signal of bandwidth BW_{PCM} , the required minimum sampling rate is $2BW_{PCM}$. Thus:

$$2BW_{PCM} = nf_s$$

$$BW_{PCM} = \frac{n}{2} f_s \ge n f_{max} \qquad Hz \qquad \dots (6-11)$$
$$BW_{PCM_{minimum}} = n f_{max} \qquad Hz \qquad \dots (6-12)$$

<u>Ex 6-5:</u>

In a binary PCM system, the output signal-to-quantization ratio is to be hold to a minimum of 40 dB. If the message is a single tone with $f_m=4$ kHz. Determine:

1- The number of required levels, and the corresponding output signal-to-quantizing noise ratio.

2- Minimum required system bandwidth.

Solution:

- 1) $L = 2^{n}$ $\frac{S_{o}}{N_{q}} = 10000 = 40 \, dB$ $\frac{S_{o}}{N_{q}} = \frac{3L^{2}}{2}$ (S.T) $\therefore L = \sqrt{\frac{2}{3} * 10000} = [81.6] = 82$ $n = \log_{2} 82 = [6.36] = 7$ $\therefore L = 2^{7} = 128$
- 2) Minimum system bandwidth = nf_{max} =7*4 kHz=28 kHz

H.W:

Consider a single tone signal of frequency 3300 Hz. A PCM is generated with a sampling rate of 8000 sample/sec. the required output signal-to-quantizing noise ratio is 30 dB.

- What the minimum number of uniform quantizing levels needed?. And what the minimum number of bits per sample needed?
- 2) Calculate minimum system bandwidth required.

<u>2- Delta Modulation</u>:

It is a sampling way to convert analog signal into digital with reduced bandwidth

Its produces information about the difference between successive samples.

 $e(t) = f(t) - \tilde{f}(t)$, where $\tilde{f}(t)$ is a stair case approximation of f(t)

The sampler with rate ($f_s \gg Nyquist \ rate$) produces pulse train d(t) where:

$$d(t) = \Delta sgn[e(t)] = \begin{cases} \Delta V & e(t) > 0\\ -\Delta V & e(t) < 0 \end{cases}$$

d(t) represents the derivative of f(t)

The demodulator will integrate d(t) to produce $f_s(kT_s)$ smoothed by LPF with *BW* of f_{max}

Slope overload problem:

Due to finite step size ΔV of integrator and if the slope of f(t) is Larger than $\tilde{f}_s(t)$ will not track f(t) in its value $[(\tilde{f}_s(t))]$ and f(t) will diverge from each other]. This will produce distortion at Rx side when d(t) is used to construct $\tilde{f}_s(t)$.

To avoid slope overload, the step size must be kept such that:

$$\left|\frac{df(t)}{dt}\right|_{max} < \Delta V. f_s \qquad \dots (6-13)$$

For single tone case $f(t) = A_m cos \omega_m t$

$$\left|\frac{df(t)}{dt}\right|_{max} = A_m \omega_m$$
, therefore

$$\Delta V_{min} = \frac{A_m \omega_m}{f_s} \qquad \dots (6-14)$$

• For speech signal, the typical frequency analysis show that about 70% of total energy lies between 600 and 1000 Hz indicating that peak energy is located that almost at frequency of 800 Hz called response frequency f_r =800 Hz, then we could assume ΔV_{min} for speech to be:

$$\Delta V_{min} = \frac{2\pi (800) A_m}{f_s} \qquad ... (6-15)$$

where f_p in the maximum amplitude of the speech signal.

Quantizing Error:

Assuming quantizing error is equally likely in the interval $(-\Delta V, \Delta V)$

$$N_q = \frac{B}{f_s} \cdot \frac{(\Delta V)^2}{3}$$
 ... (6-16)

Where B is the preconstruction filter bandwidth

Output Signal to Noise Ratio:

$$\frac{S_o}{N_q} = \frac{3f_s\overline{f^2(t)}}{(\Delta V)^2 B} \qquad \dots (6-17)$$

For single tone message $f(t) = A_m cos \omega_m t$

$$\frac{S_o}{N_q} = \frac{3f_s^2}{8\pi^2 f_m^2 B} \dots (6-18)$$

<u>Ex 6-6:</u>

- A DM has sampling frequency of 64 kHz is used to encode speech signal of ± 1 volt:
- 1- Find minimum step size to avoid step overloading.
- 2- Find SNR_q assuming speech has uniform probability density function (PDF) over the interval [-1, 1] volt.

Solution:

1. For speech signal
$$\Delta V_{min} = \frac{2\pi (800) f_p}{f_s}$$

$$\Delta V_{min} = \frac{2\pi (800)(1)}{64000} \cong 78 \ mV$$

Note:

Compare this result of 35 dB with PCM at 64000 bps ($f_s = 8 \, kHz$, $n = 8 \, bits/sample$) then $SNR_q \cong 48 \, dB$. i.e PCM is better than DM for the same bit rate.

<u>H.W:</u>

A DM system is designed to operate at 3 times the Nyquist rate for the signal with a 3

kHz bandwidth. The quantization step size is 250 mV. Determine:

- a) Maximum amplitude of a 1 kHz input sinusoid for which the delta modulator does not show slop over load.
- b) The post filter output signal-to-quantizing noise ratio for the signal in part a.