Mustansiriyah University Electrical Engineering Department

College of Engineering Third Year Class

11.1 PIC Microcontroller Unit (PIC MCU):

PIC is generally assumed to mean Peripheral Interface Controller (PIC), it
comes with a variety of families; PIC10 and PIC12 (Base-line), PIC16 (Mid-
range), PIC17 (High-end), PIC18 (enhancement), Finally PIC24 and dsPIC.
Here we will deeply look at PIC16 family and highlights on other families'
features if needed. PIC16F877A is our interest MCU in this family.

* 8-bit microcontrollers * 32-bit microcontrollers
* PIC10 * PIC32
* PIC12 * 16-bit digital signal
* PIC14 controllers
* PIC16 * dsPIC30
* PIC17 * dsPIC33F
* PIC18
* 16-bit microcontrollers
* PIC24F
* PIC24H

11.2 PIC16F877A (PIC16) identification:

PIC16F877A is very cheap, also very easy to be assembled. Additional
components that you need to make this IC work are just a 5V power supply
adapter, a 20MHz crystal oscillator and 2 units of 22pF capacitors.
PIC16F877A is a 40 pin chip, operating at a frequency up to 20MHz, it has five
Bidirectional I/0O ports A(6-bit), B(8-bit), C(8-bit), D(8-bit), E(3-bit) mapping
to 33 pins, the following points highlight the most important features:

1- 8Kx14bit Program memory space.

2- Five NO ports.

3- 8 multiplexed analog ports, with internal 10bit resolution ADC.

4- 15 kinds of interrupts.

5- 256 Bytes of user EEPROM.

6- Two Capture\Compare\PWM modules (CCP).

7- Three timers with different capabilities.

8- RS-232, 12C, and SPI interfaces (USART, MSSP).

9- 368B of RAM.

10- Wide operating frequency DC-20MHz.

11- Wide operating voltage 2.0v — 5.5v.
In addition, they have the following alternate functions:

Port Alternative Uses of 1/0 Pins No of 1/0 Pins
Port A A/D Converter Inputs 6
Port B External Interrupt Inputs 8
Port C Serial Port, Timer 1/O 8
Port D Parallel Slave Port 8
Port E A/D Converter Inputs 3
Total 1/0O Pins 33
Total Pins 40

Note that a single pin can have many functions, for example pin2 can be a
digital 1/0O (RAQ0) or analog input (ANO); the function of the pin will be

PIC Programming 101

Mustansiriyah University Electrical Engineering Department

College of Engineering Third Year Class

controlled using software, figure 11.1 illustrates the PIC16F877A layout in
more details.

PIC16F877A as other PIC families is implemented using RISC approach, with
only 35 instructions; you can build great projects, security, control, talking with
GSM system, linking to the internet, communicating with PCs and more.

I\../; 40 [+—= RB7/PGD
29 [=—= RBG/IPGC
38 [] =— RBS

37 []=—= RB4

35 [| =—= RBIPGM
35 [=— RB2
o

3

2

N

a0

MCLRMNVPF — [

RADAND w—[]

RATANT -—]
RAXANZVREFFCVREF e []
RAIANIVREF+ w— [
RAATOCKICAOUT w— [

RASIANAISSIC20UT =—[]] =—= RB1

08 = LN e L) R =

RED/RD/ANS =[] <] +—= RBOANT
RE1WRIANG =—] g > [=— VYoo
REZCSIANT =—=[]10 o []=+— Vss
Voo—» 11 ¥] =—= ROTIPSPT
Wes w112 Q29 []-=—= RD&/IPSPG
OSCACLKI —]13 @ 28] -—= RDS/PSPS
OSCHCLKO [14 27 [] +— RD4/PSP4
RCOT1OSOMICK] «—s 15 96 [] «~—= RCTIRXDT
RCAT10SICCP2 - [] 16 75 [] a—s RCBTNICK
RC2CCP1 m—=[] 17 24 [] =—m= RCH/SDO
RCHSCKISCL =—-] 18 73 [=—= RCASDISDA
RDO/PSPO = [] 19 73 [] =—= RD3IPSP3
RDOAMPSP1 =—[] 20 21 [=+—= RD2/IPSFPZ

Fig. 11.1: PIC16F877A Pins Layout.

Many engineers and developers choose it in their projects and designs for three
main reasons:

1. PIC16F877A comes with a variety of embedded modules.

2. PIC16F877A is considered a low cost MCU.

3. It has wide supporting articles in the internet.
The F letter in its name stand for Flash technology, Flash EEPROM, a version
of EEPROM memory, has become popular in microcontroller applications and
is used to store the wuser program. Flash EEPROM is nonvolatile and usually
very fast. The data can be erased and then reprogrammed using a suitable
programming device thousands and thousands of times. Letter A at the end of
PIC16F877A means that this MCU is an Advanced and an improved version of
a previous MCU i.e. PIC16F877.
With 8K program memory, PIC16F877A can store and run programs ranges
from simple (a few lines), mid, up to complex programs with many hundreds of
lines, also 368B of general-purpose registers (GPR) i.e., user RAM,; this size of
temporary storage area can maintain and take complex operations either
arithmetic or logic, float or integer, strings or characters.
Knowing the internal architecture of any MCU is a must if you want to use
assembly for writing programs (in ES terminology called Firmware), contrarily
of using a high level language like C; a wvery little architecture knowledge is
needed to write a perfect firmware.
Finally, all hardware, software aspects and the embedded modules of
PIC16F877A will be taken and explained using examples and some projects.

PIC Programming 102

Mustansiriyah University Electrical Engineering Department

College of Engineering Third Year Class

11.3 Digital I/O (Part One):

The first step for mastering any MCU is having a knowledge of how to use pins
for digital input and output, as we say previously PIC16F877A has 33 1/O pins
partitioned into 5 ports and each port has a specific number of pins ie. A(6),
B(8), C(8), D(8) and E(3) as shown in figure below, note that we can access the
port as a whole or simply treating each pin individually.

i TR QUL UHHE 1

012345 01234567 01234567 01234567

A B C D E

Note: the term bit mode will be used when dealing with a single pin either for
input or output, for ports we will use byte mode term; although ports A and E
have less than 8 bits 1/0.

PIC C compiler comes with a variety functions for dealing with digital 1/O for
ports and pins, table below shows the most important functions, all of these
functions and more will be handled and explained using examples.

Function Description

Output_bit(pin, bit) Output 1(high voltage) or 0(low voltage) to the specified pin.
Input(pin) Returns 1 or 0 corresponding to current pin status.
Output_X{(data) X is port name i.e. A,B,C,D.E . data is 8 bit (1 Byte).

Input X() Returns 1 byte of data according to each pin state of port X.

In this section many examples and peripherals will be examined:
1.Using Output function: This example shows how to use simple digital
output functions in bit mode, time delay functions, and show many of
Proteus aspects, each line in this example is explained in detail.
2. Using 1/0 functions: Shows more digital /O functions, more peripherals.
3. Interfacing with 7-segment display: More H/W, more S/W, but friendly
more; in overall: good interfacing and programming practice.
Each example will explain something either for PIC, compiler, or Proteus. The
code of the first example explained line by line, so | will step over any similar
lines in the next examples either in this section or other sections.

11.3.1 Using Output functions:

Example name: Flashing LED.

Main goals: Introduction to PIC C and Proteus, using bit mode functions.

DESCRIPTION: A LED (Light Emitting Diode) is connected to PIC16F877A
at pin RB7, initially it will be ON, and after a delay of 0.5
second its state will be changed to OFF, then after half of
second too; it will be toggled to ON and so on....... , in other
words the state of the LED will be changed every 0.5 second.

PIC Programming 103

Mustansiriyah University

College of Engineering

Third Year Class

Electrical Engineering Department

#include <16F877A.h>

#FUSES XT

#USE DELAY(CLOCK = 4000000)
1 == == =
void main()

{

set_tris_b(Ox7F);

while(1)

{
output_high(pin_b7);
delay_ms(500);
output_low(pin_b7);
delay_ms(500);

Ui

OSC1/CLKIN RBO/INT
OSC2/CLKOUT RB1
RB2
RAO/ANO RB3PGM
RA1/AN1 RB4
RA2/AN2/VREF-/CVREF RBS
RA3/ANIVREF+ RB6/PGC
RA4/TOCKIC10UT RB7/PGD
RA5/AN4/SS/C20UT

__ RCOM10SOITICKI
REO/ANSRD RCA/T10SI/CCP2
RE1/ANG/WR RC2ICCPA
RE2IANT/CS RC3/SCKISCL
RCA4/SDUSDA

MCLRNVppTHV RC5/SDO
RCBITX/CK

RC7/RX/DT

lebelslelslslsle Isbleblallsls [slefelelslalele

PIC16FB7TA

Figure 11.2: Flashing LED code and layout.

11.3.2 Modifications:

1. If we want to use pin RC3

and after modifications.

instead of RB7 then, write down

D1
LED-GREEN

lines before

Before modification (line or keyword)

After Modification

set_tris_b(0x7F)

- set_tris_c(0xF7)

pin_b7

- pin_c3

2. Use another equivalent

functions

that included in PIC C

to perform the

same operation with one second delay, write down lines before and after
modification, suppose that the LED is connected to pin RD2.

Before modification

After Modification

set_tris_b(0x7F)

set_tris_d(OxFB)

output_high(pin_b7)

output_bit(pin_d2,1)

delay_ms(500);

delay_ms(1000);

output_low(pin_b7)

VIV

output_bit(pin_d2,0)

Example One: Suppose now that there are 8 LEDs connected to port D, LEDO on RDO, and
LEDI on RD1 and so on..., as shown below. Write down a code that performs a nibble (4
bit) toggling, if LEDO to LED3 are ON then LED4 to LED7 are OFF and vice versa, with
300mS delay, note that all pins of port D must be output, and you must deal with 8 bits(one
Byte) at a time.

PIC Programming 104

Mustansiriyah University Electrical Engineering Department

College of Engineering Third Year Class

#include <16F877A.h> Rcfgégggc —5
#FUSES XT rcasOisDA |22 LEDO '?
#USE DELAY(CLOCK = 4000000) RC5/SDO |5+ »
. . RCOTX/ICK i
Void main() RCTRXDT =28 ﬂ
{ . . RDOPSPO |—is LED2 +
set_tris_d(0x00); //PORT D is output RD1PSP1 #l - 74|
while(1) RD2PSP2 |5 .
RD3PSP3 j—iz .
{ RD4PSP4 % -
: RD5PSP5 it
output_d(OxOF?, /ILEDs 0,1,2 and 3 are ON ROSPSPS 95 LED? }I
delay_ms(300); RD7/PSPT sl N ¢
output_d(OxF0); //LEDs 4,5,6 and 7 are ON, Vi
I/l others are OFF.
delay_ms(300); //300 mS delay time. e
}
} /llend main.

Note: output_X(BYTE) is a function that deals with the whole port. X: A,B,C,D, or E

11.3.3 Using /O functions:

Note: | will explain the new lines of code only, any lines explained previously

will not be handled.

In the previous example we show how to wuse digital output functions in bit

mode only, also in the modification part for the same example we highlight

some of byte mode topics. The next example explains how to use simple digital

I/0O functions either in bit mode, or in byte mode.

Example Two: Port reflection.

Description: 8 LEDs are connected to port D and 8 switches to port B.
Port D(LEDs) must reflect port B(Switches). For example, if
switches on RB1 and RB6 are high then LEDs on RD1 and
RD6 will be ON too.

From previous description port D must be output and port B must be input.
Schematic is shown in figure 11.10.
Instead of using 8 LEDs and 8 switches individually, 1 decided to introduce new
peripherals. LED BAR is working as an array of sequential LEDs it can be seen
in many devices as a graphical guide to demonstrates a level of some factor
such as volume (Sound level) in stereos or recorders, velocity in cars,
temperature and so on...., also DIPS (Dual In Package Switch) is an array of
switches and same as a switch it must be pulled-up or pulled-down, it has many
advantages such that simplicity of wiring and small size.

PIC Programming 105

Mustansiriyah University

College of Engineering Third Year Class

Electrical Engineering Department

VCCA
PULLUPs RESISTORs
B8 SWITCHS
PIC16F877A ® @
22 oscricuan o 5 [EH]
2 oscaciwour ret (=32 -
Veo 2 RB2 5 [—— | ;
= rawano RBIPGM |2 =
— RAlAN1 RBA |7 ‘ | e e |
~5—] RAYAN2VREF JCVREF RBS f—= =
RAI/ANIVREF » RBEPGC |— — ==
—E RA4TOCKICA OLT RE7PGD ==
~— RAS/ANASTIC20UT T
RESET P RCUTIOSOMICK s DPSW_S
S REWANSRT RCATIOSICCP2 :
] REVANGATR rezceet 1L
101 rezantiS RCYSCKISCL =2
&L 1 RCASDISDA ==
NCTRNpRITHY R
ROSTXCK =53
ReTpT (-2 LEDSBAR
ROOPSPO |12 H=}E
— RDUPSP1 [—7 —— =
- RoMoPs |40 Ll
RO4PSP4 |2 =
RDSPSPS L] [— 1
S . |
ROTPSPT il 3 i)
—— =
PETEFETTA] =
LEDBRRGRAPH.GRN

Figure 11.3: 1/O schematic layout.

Pulled-up means that the output of the switch is normally high and it goes to
low whenever it pressed; reset button must be pulled-up. In pulled-up switches
the resistors must be connected to Vcc from one side and to the target pin and
button from the other side; as shown above, in pulled-down, just, replace Vcc
with GND and vice-versa.
The code of port reflection is as follows:
/ICode begins here:
#include <16F877A.h>
#FUSES XT
#USE delay (clock =4000000)
void main()
{

/IDefine variables

char x;

set_tris_B(0OxFF); //PORTB is input.

set_tris_D(0x00); //PORTD is output.

output_D(0x00); //Clear PORTD

while(1)

{

x = input_B(); //Read PORTB
output_D(x);

}
}
Note: delay function could be appended to the above code with appropriate
time delay.

PIC Programming

106

Mustansiriyah University Electrical Engineering Department

College of Engineering Third Year Class

11.3.4 Modifications:

1. Rewrite down the while(1l)'s body wusing one line with full optimization

i.e. less variables, calculations, instructions....
output_D(input_B()); /INo needs for variables.

2. As you note the above code deals with ports atomically (as a whole),
either output or input in byte mode, write down the equivalent code of
while(1)'s body using bit mode only.

/IWe can read pin status using input(pin) function, it returns 1
/[for high voltage and 0 for low voltage.
output_bit(pin_DO, input(pin_BO0));
output_bit(pin_D1, input(pin_B1));
output_bit(pin_D2, input(pin_B2));
lIrepeated sequentially
/luntil reaches:
output_bit(pin_D7, input(pin_B7));

11.3.5 Interfacing 7-segment display:

Before programmable LCDs (Liquid Crystal Display), the dominant display
device for any embedded system was 7-segment display, and till now you can
see it in many systems such that prayer clocks in mosques, customers counter in
restaurants, Microwaves timers, fridges temperature viewer, any MPUs or
MCUs kit and many other devices. 7-segment can be manufactured in many
ways but the most popular is LED approach. Engineers and developers prefer
LED 7-segment for many reasons as:

e Low cost.

e Low power consumption.

e llluminating device.
7-segment display is simply 7 LEDs arranged somehow to demonstrate any
BCD or even Hexadecimal number, some of them comes with dot operator
called decimal point (DP), and some are manufactured for a specific system as
clock organization. Figure 11.11 shows the general layout for any 7-segment
display, from this figure each letter (from a to g) demonstrates a LED so there
are 7 main LEDs or segments; indeed if we ignore the decimal point.

||

d GND

A—p
b— f
€ ———p
d——»
e ——»
f—» e
B ————>]

Figure 11.4: A common cathode 7-Segment display layout.
7-segment display comes in two main parts; common cathode or common anode,
common cathode as shown in above figure means that all LEDs are common in
GND so to illuminate any segment (LED) we must feed it with 5 wvolt, in contrast
of common anode, all segments common in Vcc; so for illumination any segment O
volt must be fed to this segment.

PIC Programming 107

Mustansiriyah University Electrical Engineering Department

College of Engineering Third Year Class

Now suppose that we need to display number O on a common cathode 7-seg then
we must feed segments a, b, ¢, d, e and f with Vcc and segment g with GND. A
second example, if we want to display number 2 then a, b, g, e and d must be in a
high voltage, ¢ and f must be in low voltage.

In general, the main task for 7-seg is to display any hexadecimal number, and as
we know hexadecimal digits is 4 bit long so we must find a method to convert 4 bit
digit to 7-seg code. Actually, there are two solutions for this problem, the first by
using a dedicated IC or by building your own circuitry | prefer to call this a
hardware solution (BCD to 7-SEG) decoder. The second is by using a piece of
code that stored in the same PIC to do this job i.e. Convert from 4 bit digit to 7-seg
code, | called this method a software solution (look-up table).

Also along with 7-segment display (output device); | will introduce an input device
named thumbwheel. is a BCD, octal or hexadecimal input device, it is somewhat
user friendly, so user Thumbwheel can scroll down or up a wheel until reach the
target number and the number's code will be generated automatically and latched
into output pins. Thumbwheels are mainly found in PLCs (Programmable Logic
Array).

Example Three: BCD to 7-segment.

Description: Read a BCD thumbwheel value that connected on
<RAO:RA3> and display it on 7-segment connected on
<RD4:RD7>.

U1
13 1 33
b peoduipeit "”:E =
SW2 e L
@ y. RA1ANT R R84 —w
@ ::fANZNﬂEFMEF - R85 %
THME! HBCD] RAATOCKNC 10UT RE7FGD
—— RASIANASSIC20UT
RCOTI0SATICKI -F
E REGANSRIS RCUTIOSKCCP?
REUANGVTR RC2CCPY
] REZANTICS RCASCKASCL
RCASD¥SDA
i WETRMEPITHY REASDO %
REATXCK
RCTRXDT i
DOPS 19
:ows:?) Common cathode 7-seg
ROYPSPS 74LS48
RO4PSFA T oA g —
RDSPSPS B (=] T
RDGPSPO C QcC
RDTPSPT D (= s} to
———————————— =] B/REO CE [t
—=C] REI oF T
- LT O
—
BCDto 7-SEG

Schematic is shown in above figure, code is shown below.
/[Code begins here:
#include <16F877A.h>
#FUSES XT, NOWDT
#USE delay (clock = 4000000)
void main()
{
/lInitialize SFRs (Special Function Registers)
set_tris_A(OxOF); // Port A is input for Ap-As
set_tris_D(0xOF); // Port D is output for Ds-D~
output_d(0x00); //Clear PORTD
while(1)
{
output_bit(pin_d4, input(pin_AO0));

PIC Programming 108

Mustansiriyah University Electrical Engineering Department

College of Engineering Third Year Class

output_bit(pin_d5, input(pin_A1));

output_bit(pin_d6, input(pin_A2));

output_bit(pin_d7, input(pin_A3));
}

—

Note: delay function could be appended to the above code with appropriate
time delay.

As you expect from example description <RAO:RA3> must be input and
<RD4:RD7> must be output, so because of partitioning ports to input and
output i.e. <RDO:RD3> RA4 and RA5 are input pins, we shouldn't write to
port D as a whole, and if we reads port A we must ignore excessive bits or read

it in using bit mode functions. | wused bit mode function especially for port D
because it is divided into input and output so if | used byte mode function say
output_D(BCDnum) maybe I ~will fall in a trouble with the devices that

connected to other pins in port D; if they are exist.

NOWDT is a new fuse introduced in the previous code, WDT is stand for
Watch Dog Timer, it is an internal timer if enabled it begins running with PIC's
program until reach some defined value then a software RESET signal will be
generated forcing PIC to reset. In other words the watchdog timer is designed to
automatically reset the MCU on program malfunctions, by stopping or getting
stuck in loop. For example suppose that the wvalue of WDT time-out is 18m
second (Typical period) and in the worst case the program needs 10m second to
complete one turn of execution then if the execution time takes more than this
value means that the program is getting stuck or freeze, and as we mention after
18ms.

WDT time-outs and the MCU forced to reset. In fuses line NOWDT means it
is disabled, but writing WDT only will enable it (by default it's enabled).
Finally, if WDT is enabled then it should be regularly reset at the beginning of
while(1) loop; in PIC C restart_wdt() must be called.

The above example stand on hardware solution so 74LS48 IC is used to convert
BCD code to 7-segment, you can simply build your own = combinational
circuitry using simple digital logic design. For more details of 74LS48 IC refer
to its datasheet.

Software solution will be handled in the next example.

Example Four: Hexadecimal Up-Down counter.

Main goals: Interface 7-segment with PIC directly using software
solution, more PIC C topics and programming practices.

Description: Read the state of RB7 pin, if it's high then begin counting up

on a 7-segment that connected directly to portD, else count
down. Counts must be in hexadecimal.
Schematic is shown below.

PIC Programming 109

Mustansiriyah University Electrical Engineering Department

College of Engineering Third Year Class

U1
13 33 Vee
- QSCHCLKIN RBOINT =~
L] oscacikour RB1 |=2r
RB2 fem—
2 36
= ggg::? RB&PRGB!-; [~ 37 Pressed ° Countup
~2—{ RA2AN2IVREF JCVREF RES % Unpressed : Cout dovn
i RANAN3IVREF + REGPGC [mtt o — N
——{ RA4TOCKIC1OUT RETPGD)
e RASIANASSIC20UT 15
o RCUTIOSOTICKI |2
——{ REWANSRDT RCITIOSICCR2 =2
2] RE 1ANGATIT RC2CCP1 (1t PULLDOWN
0] rE2ANICS RCHSCKISCL [
; RCA/SOISDA |52
L MCTRVpRTHY RessDo 2 —L
ROBTHCK (52 =
RCTRWDT <&
RDOPSPD fil
RD1PSP1
RD2/PSP2
RDIPSP3 |t
RDAPSPA ==
RDSPSP5 |—=
RDAPSPE |—=
RD7PSPT =22
PICTGE8TTA

1

As you expect from example description port D is output and pin RB7 is input.
I think that the program is straightforward.

Referring to figure in page 98, if we imagine that each segment corresponds to
one bit, so segment a is the least significant bit and g is the most, then to
display number 0; <a,b,cd,e,f> must be one and <g> th must be O this means
0111111 in binary and if we suppose that the 8 bit is don't care (set to 0) then
this binary numbers corresponds to Ox3F in hexadecimal; in the code it is
considered the first element in an array. In the same manner we can find any
digit or symbol and include it into the same array, then we can consider this
array as a lookup table and map our target digit to it, for example the code of
number 0 is stored in location 0, number 1 in location 1 and so on.......

Note that the wvariable i of the for() loops is signed integer, the reason behind
that is the condition of the first for() loop (i >= 0), this condition remains true
until. i becomes a negative number, if we use an unsigned integer then this
condition will remain true forever i.e. i is always positive between 0 and 255.

Code is shown below.
/ICode begins here:
#include <16F877A.h>
#FUSES XT, NOWDT
#USE DELAY (CLOCK =4000000)
char code7seg[16] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,
0x7F,0x6F,0x77,0x7C,0x39,0x5E,0x79,0x 71};
void main()
{

signed int i;

set_tris_d(0);

set_tris_b(0x80); //RB7 is input.

output_d(0); //Clear portD

while(1)

{

switch(input(pin_B7))
{
case 0:
for(i = OXOF; i >=0; i--){
output_d(code7seqli]);

PI1C Programming 110

Mustansiriyah University Electrical Engineering Department

College of Engineering Third Year Class

delay_ms(500);
}
break;
case 1:
for(i = 0; i<= OXOF; i++){
output_d(code7seq|i]);
delay_ms(500);

}
break;
}/end switch
}
}/end main

/ICode ends here.

H.W2:

Q1)Reprogram example four to count up or down decimal numbers (0 to 9)?
hint: use look-up table.

Q2)Redesign example three without using BCD thumbwheel to count up decimal
numbers (0 to 9) with 0.5sec delay between each count ?
hint: use 74LS48 IC.

11.4 Digital 1/0O (Part 2):

In previous part we take simple digital I/O programs with very simple
peripherals like LEDs, switches, 7-segments display. Now we will take the
same digital I/O functions, but applying them to another complicated
peripherals - (Devices). Two devices will be explained in this part: keypad and
LCD also we will show how to utilize from internal EEPROM memory.

11.4.1 Keypad:

Keypad can be considered as a small keyboard, it comes with many embedded
systems as a standard input device such as Phones either telephones or cell
phones, Calculators, = Microwaves, Security — systems, Remote control modules
and many more...., figure below shows a 4x3 and a 4x4 keypads.

L 1

—l7ls]le][+]| qrO@®

—l4lls]le][x]| @®®

2 B= | 7 O®®

—Po][=][+]| G®@®
I

4y4 Keypad 43 Keypad

Push button is the main component for any keypad, 16 push buttons for 4x4, 12

for 4x3 keypads and so on. These push buttons are connected using matrix

approach, so we can consider any keypad as a two dimensional array. For

example, a 4x3 keypad has 4 rows and 3 columns, in figure above rows are

PIC Programming 111

Mustansiriyah University Electrical Engineering Department

College of Engineering Third Year Class

named A, B, C, D and columns 1, 2, 3. Matrix connection improves the
connectivity and reduces the number of used pins, i.e. if we connect 16 buttons
to MCU directly then we need 16 input pins and this implies more wiring, in
the other hand if we connect them as a matrix then only 8 pins are needed with
less wiring. Figure below shows the internal connection of a 4x4 Kkeypad using
matrix approach.

Row 0 —O 01 —0 O—l —O 0—1 —O O—‘

4 5 6 B

Row 1 l O—l -0 O—l *O O—l *O O—l

0_0_::_7 '_o_n_s 0_(—>=—9 “_O—D—c

Row 2 o—l 0—1 0_1 o—l

0 F E D

fow 3 O O—l = O—l "0 O—l +O 0—|
Colll
Col2
Col3

A scanning method (will be explained using comments in code) is used to get
any pressed key, also either rows or columns (according to scanning method)
must pull-ups.

11.4.2 LCD:

LCD (Liquid Crystal Display) is considered the dominant of display devices in
embedded system now. It comes with a variety flavors such as 7-segment,
Textual, Graphical and Dot matrix. LCDs exist in many commercial systems as
a standard output device like Cell phones, Laptops, Digital multi-meters,
Digital cameras.... and in general; most of MCUs applications.

Here we concerned in Textual LCD with integrated HD44780 controller only,
note that most of commercial LCDs are based on this controller. The purpose of
HD44780 is making an interface between LCD and any MCU for both
hardware and software.

Table below shows different models of LCDs that use a built in HD44780.

Model name Rows / Characters

LMO16L 2 rows x 16 characters per row
LMO017L 2 rows x 20 characters per row
LMO018L 2 rows x 40 characters per row
LMO044L 4 rows x 20 characters per row

Figure below shows LMO016L and LMO018L LCDs layouts.

88Y gk, 85383885 B8Y gk. 35533885
T <lelel el T <ol el

LMO16L LMO18L
Fortunately, PIC C has a built in libraries for LCDs based on HD44780
controller. The following example shows how to connect and program
PIC16F877A with 4x4 keypad and LMO16L.

PIC Programming 112

Mustansiriyah University Electrical Engineering Department

College of Engineering Third Year Class

Example name: Echo program.
Main goal: How to deal with keypads and LCDs.
Description: waits for a key, when pressed print it out to LCD.

Circuit connections are shown below, note that connections between LCD and
PIC are implemented according to LCD's library (..\PICC\Drivers\LCD.c).
Code is shown in the next page.

Vo gy 4X4 KEYPAD
-
“_‘PUTUP' A 7 8 9 . LCD
LMO16L
— *|4][5]|6]|X
“_IPUL% ¢ 1 2 3 - ggm
204 2%, 85833885
ON -
POLLOP °"7%e 0 - + ‘_INH " mo!‘_ a
b e a5 o = T o 7 o T s e 11 I o 5 o
o
Eéwﬁ Port C BaBEEEEH|:
L 3EEEEEEs |
Port B Port D

#include <16F877A.h>
#FUSES XT, NOWDT
#USE DELAY (CLOCK = 4000000)
#include <LCD.c> //LMO16L library
/* LCD connections
DO -> E, D1 -> RS, D2 -> RW
D4 -> D4, D5 -> D5, D6 -> D6, D7 -> D7
*
/IKeypad connection:
#define col0 PIN_BO
#define coll PIN_B1
#define col2 PIN_B2
#define col3 PIN_B3
#define row0 PIN_B4
#define rowl PIN_B5
#define row2 PIN_B6
#define row3 PIN_B7
char getKey()
{
/IColumns are output, Rows are input.
/lIrows are pulled-up, and PIC always reads them high unless a key is pressed.
do
{
output_low(col0);output_high(coll);output_high(col2);output_high(col3);
if(linput(row0)){
while(linput(row0)); //wait until the pressed key is released.

PIC Programming 113

Mustansiriyah University Electrical Engineering Department

College of Engineering Third Year Class

return '7'; //[Key[0][0] in our keypad
}
if(linput(row1)){ while(!input(row1)); return '4";} //key[1][0]
if(linput(row2)){ while(input(row2)); return '1";} //key[2][0]
if(linput(row3)){ while(input(row3)); return 'c';} //key[3][0]
output_high(col0);output_low(coll);output_high(col2);output_high(col3);
if(linput(row0)){ while(input(row0)); return '8';}
if(linput(rowl)){ while(linput(row1)); return '5';}
if(linput(row2)){ while(linput(row2)); return '2';}
if(linput(row3)){ while(linput(row3)); return '0";}
output_high(col0);output_high(coll);output_low(col2);output_high(col3);
if(linput(row0)){ while(linput(row0)); return '9';}
if(linput(row1)){ while(linput(row1)); return '6';}
if(linput(row2)){ while(linput(row2)); return '3';}
if(linput(row3)){ while(linput(row3)); return '=";}
output_high(col0);output_high(coll);output_high(col2);output_low(col3);
if(linput(row0)){ while(linput(row0)); return '/';}
if(linput(row1)){ while(linput(row1)); return '*';}
if(linput(row2)){ while(linput(row?2)); return '-';}
if(linput(row3)){ while(linput(row3)); return '+';}
twhile(1);
}
The above piece of code is concerned with including LCD's library and

implementing a function getkey() (more professional 4x4 keypad functions
found in www.ccsinfo.com/forum) to read a key from keypad when pressed.
As you see this function return the ASCIlI code for the key, you can modify the
returned value to any type (e.g. int, BYTE..) so every returned value has its
meaning. Also you can change the port or pins that used by keypad, easily by
changing each pin located in define lines.

Main function (main()) is shown below.
void main()
{
char key;
set_tris_b(0xF0); //configre keypad Columns <RB0:RB3>, Rows <RB4:RB7>
output_b(OxFO0);
lcd_init(); //Initilize LCD.
lcd_gotoxy(1,1); //Set cursor.
lcd_putc("... Welcome ...");
delay_ms(1500);
lcd_putc('\f');
while(1)
{
key = getkey();
delay_ms(50);
if(key I="c")
printf(lcd_putc, "%c", key);
else lcd_putc(\f');
}
}
The code is straightforward and easy to understand.

LCD's functions are summarized in table U.

PIC Programming 114

Mustansiriyah University Electrical Engineering Department

College of Engineering Third Year Class

Function syntax Description And examples

Led_init() Used to initialize LCD, you have to call it before use any other
function.

Led_gotoxy(x,y) Set the cursor to a specific location for writing. (1,1) is the first
location.

Lcd_putc(data) Display data on LCD, data must be string (array of characters) or
one character (in ASCII).

Lcd_gete(x,Yy) Returns character from a specific location.

Printf(lcd_putc,String,varl,var2,...) Used to display any variable or constant. For example:
printf(lcd pute,"z = %u",varl)://output: z = |varl|
Printf(lcd putc,"Temperature = %d C",t);
Printf(lcd pute,"%d+%d = %d".x,y,r);//out: x| + |y| = |r|
Special meanings: \n : new line. \f : clear LCD. \b : move back one location.
%d : signed int. %u : unsigned int. %f : float. %c: char.

PIC16F877A has internal pull-ups resistors on <RB4:RB7>. We can utilize this
feature when using a Kkeypad in our design. To activate it just write the
following line: port_b_pullup(true) under set tris_b(0xF0). Also you must
modify your circuit by removing all pull-ups resistors on <RB4:RB7>.

11.4.3 Internal EEPROM:

As we say in section 2, PIC16F877A has an internal 256B EEPROM. This
memory 1is used to store any permanent data (e.g. system settings, passwords...)
that must remain when the system is reset or even when shut down, also this
data can be modified at run time.
PIC C gives us two main functions for writing on or reading from internal
EEPROM:

1. write_eeprom(address, data)//writes data(one byte) to a specified address(one byte).

2. read_eeprom(address)//returns one data byte from a specified address(one byte).

11.5 ADC Module:

ADC is stands for Analog to Digital Converter. It is used to convert any analog
signal to digital data so that it can be stored and manipulated digitally. Digital
voltmeter is a good example it simply takes analog reading (Voltage) and
converts it to digital using ADC then by making simple calculations on this
digitized wvalue we will have a digital reading corresponds to the original
analog, now we can store it, display it on a 7-segment or LCD, send it to PC as
we will see later and the most important we can modify and process this digital
data. And same as digital voltmeter procedure we can handle any analog input
such as temperature, pressure and so on...

PIC16F877A has 8x10bit multiplexed ADC channels (ANO-AN7) mapped to
port E and port A except RA4. Next figure shows an abstraction view for ADC
module.

PIC Programming 115

Mustansiriyah University Electrical Engineering Department

College of Engineering Third Year Class

ANO/RAO
Analog input pins:
i RAO RA1 RA2 RA3 RA5 RE0 RE1 RE2

ADC

YYYYYYYY
8x1 MUX

®
L 4
L 4
N
I
N
&
L 4

AN7/RE2

Result
(10bit)

As you note from previous figure the result of conversion is 10-bit width and
this means that the result of conversion is a value between 0 and 21%1 or
[0,1023]. For example if we wuse b5volt as reference voltage then analog input
should be in TTL level (ranges from 0 and 5volt) and in this case Ovolt analog
corresponds to O digital in result and 5volt analog corresponds to 1023 digital in
result. In real application analog input is unknown and at the same time it is our
target. The procedure for calculating this value is straightforward. Firstly, make
a conversion to get a digital value that corresponds to analog input. Secondly,
make a reverse calculation for the wunknown analog voltage as follows (note
that the default value for Vrer is Vb voltage at pin 11 or 32, in general it is 5v):
Vref g 1023

Analogunknown =2 DigitalKnown

. v
From above expression: Analogunknown = %

NOTE: PIC C provides us with two choices for ADC manipulation either 8-bit
(ADC=8) or 10-bit (ADC=10). Above equation uses 10-bit, if we wuse 8-bit then
we must divide by 255 (28-1) rather than 1023 (21°-1).

To use ADC module the following steps must be applied:

X Digitalgnown

Steps: Corresponding PIC C code (Examples):
1. Configure pins (analog or setup_adc ports(ALL ANALOG);
digital).
2. Configure conversion clock. setup ade(ADC CLOCK INTERNAL);
3. Select channel. set_adc_channel(0);
4. Read conversion result. DigX =read adc()://now multiply DigX with Vref/1023 or Vref/255.

Once you configure the ADC (first 3 steps) you can read the converted value.

The first 3 steps can be written one time in the main() and before while(1).

You can pass other parameters for the PIC C code shown above, we will take some of
them using examples.

Two examples will be taken: first, building a digital voltmeter. Second,
measuring temperature and displaying it on LCD.

Example 1: TTL digital voltmeter.

Main goal: How to deal with ADC module (10bit resolution).

Description: reads a voltage ranges from 0 to 5 volt and display it on LCD.

PIC Programming 116

Mustansiriyah University Electrical Engineering Department

College of Engineering Third Year Class

vee

I
-H— O5CUCLKN RBONT ﬁ
RV1 L] oscacikour RB1
o RE? i
RANANG RBIPGM
o® + RA1IAN! RB4 ﬁ
=] RANANIVREF JCVREF =
2 RAANIVREF » REGPOC =22 LCcD1
= =] RATOCKLCTCUT RETPGD fmi iy
—_ RWWQWRICMIOSMNKI "
i ¢ locumes RCUTIOSUIOCR2 |8 Voltage = 3.50v
- % REHANGATIT RC2ICCPT % g)
10 1 peaantics rescwse |2
RCASLUSDA |2
1 24
A wrvoemv RCss00 2
caicK |25 888 ¢%, 3s333885
RCIRXOT =22
.-INH oofe] ol ol
RCOPSFY 1 o
ROUPSP
reapsea 21
ROAPSP |—ie L
ROaPSPa
RCAPSPS
RLEPSPY
ROTPSPT
ey T St

As shown above a variable resistor is used to choose a voltage from 0 to b5v.
Code is shown below.
#include <16F877A.h>
#DEVICE ADC=10 // return 10 bit(FULL RESOLUTION) from ADC, Will be explained later.
#FUSES XT // Crystal osc <= 4mhz.
#FUSES NOWDT // No Watch Dog Timer.
#FUSES NOPROTECT // Code not protected from reading.
#USE DELAY(CLOCK = 4000000)
#include <lcd.c>
void main()
{
int16 digitalValue; //16 bit integer, to store the ADC result (10bit).
float voltage;
setup_adc_ports(ALL_ANALOG); //All 8 pins are analog input. Vref is 5v.
setup_adc(ADC_CLOCK _INTERNAL);//Use internal clock (TAD between 2u-6u Second)
set_adc_channel(0); //ANO is the used here pin.
lcd_init();
lcd_gotoxy(1,1);
printf(lcd_putc, "Digital voltmeter");
delay_ms(1500);;
while(TRUE)
{
digitalValue = read_adc();
voltage = (float)digitalValue/204; //ADC equation: digitalValue*5/1023
printf(lcd_putc,"\fVoltage = %1.2f v", voltage);//(%1.2f): display a float with 1
/linteger digit and 2 fractional.
delay_ms(500); //can be ignored
}
}
Because ADC ports are configured to ALL_ANALOG we can use any pin from
<ANO:AN7> as analog input, for other parameters show 16F877A.h header file.
In above example we use ANO and according to that we must read from channel
0 this is done wusing set_adc_channel(0) line. Suppose that AN5 is used then
instead of passing O we must pass 5 i.e.) set adc_channel(5). Tap is the time
required from ADC to digitize one bit (at minimum, it must be 1.6uS). By
choosing ADC_CLOCK_INTERNAL Tap automatically set between 2uS and 6usS.
Example 2: Temperature control system.

Main goals: More about ADC module, dealing with LM35 temperature sensor.

PIC Programming 117

Mustansiriyah University Electrical Engineering Department

College of Engineering Third Year Class

Description: Reads a temperature from 0°C and above. If it is less than 22°C send a high signal
from REO to operate a heater. If the temperature is more than 27°C send a high
signal from REL to operate an air conditioner. Use ADC=8 and V= 1v.

We will use LM35DZ temperature sensor, it is a 3 terminal sensor (Vcc, GND

and O/P) and it can measure a wide temperature range (from 0°C up to 100°C).

The most important feature (for more features refer to datasheet) that its output

is linear with 10mV/°C. This means that if temperature is 1°C then LM35's

output is 10mV, so and simply:
1°cC Temperature

10mV ~ Sensor output voltage
And this implies that:
Sensor output voltage

10mV

For example suppose that the output voltage is equal to 250mV then according
to above equations the current temperature is the result of (250x1073x100) and
this equal to 25°C.
Honestly, there are many types to LM35 like LM35A, LM35C and our sensor
LM35DZ, each one differ from other in temperature range (e.g. LM25C can
measure from -40°C to 110°C) and accuracy.
As you note from description REO and RE1 must set to digital output, LM35 is
connected to ANO and the reference voltage (pin A3) is set to 1v. Schematic is
shown below.

Temperature = = (Sensor output voltage) x 100

LM35D f—————>{RA0/ANO

1 volt @————]RA3/AN3/Vref+

To air RE1/ANG

conditioner

LCD

PORTD-RD3

PIC16F877A

Tip 1: Control system like that is called a regulator system. It is automatically
maintains a parameter at (or near) a specified value; in our example we
maintain temperature.

The interface between PIC (low voltage devices) and heater or air conditioner
(high voltage devices) can be done using any device that makes isolation
between them like relays (certainly with other elements).

Code is shown below.

#include <16F877A.h>

#DEVICE ADC=8 //return 8-bit width. Don't forget to divide digitalValue over 255.

#FUSES XT, NOWDT, NOPROTECT

#USE DELAY(CLOCK = 4000000)

#include <LCD.c>

#DEFINE heater PIN_EO

#DEFINE air_c PIN_E1

void main()

{

int8 digitlValue; //Store the result of A/D conversion. 8bit is enough.

PIC Programming 118

Mustansiriyah University Electrical Engineering Department

College of Engineering Third Year Class

float temperature;
set_tris_d(0);
output_d(0);
/lInitialize ADC module
setup_adc_ports(ANO_AN1 VSS VREF); //ANO and ANL1 are analog input pins.Vref at AN3.
setup_adc(ADC_CLOCK_INTERNAL);
set_adc_channel(0);
lcd_init();
lcd_gotoxy(1,1);
lcd_putc("Temperature\nControl System");
delay_ms(1500);
while(1)
{
digitlValue = read_adc();
temperature = (float)digitlValue / 255; //Apply ADC equ.: digitalValue*Vref/255
Temperature = temperature * 100; //Apply LM35 equation.
printf(lcd_putc, "\fT = %2.2f", temperature);
if(temperature > 27.0)
{
printf(lcd_putc, "\nHigh temperature!");
output_high(air_c); //turn ON air conditioner.
}
else if(temperature < 22.0)
{
printf(lcd_putc, "\nLow temperature!");
output_high(heater); //fturn ON heater.
}
else
{
printf(lcd_putc, "\nModerate T..re!");
output_low(air_c); //turn OFF air conditioner.
output_low(heater); //turn OFF heater.
}
delay_ms(500);
}
}Y/end main
In #DEVICE) directive we use ADC=8 instead of ADC=10 this means that
read_adc() function will return 8-bit only from the converted result and a
variable with int8 type is enough to store this value also instead of dividing by
1023(21°-1) in ADC equation ((ViexdigitalValue)/1023) we must divide by 255
(28-1), the overall result is a light calculation but less accuracy.
Pin RA3/AN3 can be used as analog input or reference voltage input. This can
be determine according to the argument that passed to setup_adc_ports()
function. In the above code it is used as Vwr . By setting Ver to 1v the final
result will be somewhat more accurate (in examples like this only). To show the
difference you can convert Vs to default VDD (in general 5v) as example 1
and change the ADC equation to ((digitalvaluex5)/255). Next table shows some
setup_adc_ports() parameters.

PIC Programming 119

Mustansiriyah University Electrical Engineering Department

College of Engineering Third Year Class

Some setup_adc_ports() parameters.

Parameter Description

NO_ANALOG All pins are digital.

ALL_ANALOG All pins are analog. Vs = Vpp.

ANO ANO is the only analog pin. Vres = Vpp.
ANO_AN1_AN3 All of these pins are analog input. Vs = Vpp.

ANO AN1 AN2 AN4 VSS VREF All of these pins are analog. Vi is set at AN3.

NOTE: Vpp or Vcc means the voltage that fed to PIC at pin 11 or 32; it is
normally 5v but you <can ~choose from 2v - 55v (according to PIC
specification). So if you wuse Vpp as Ver for example ALL_ANALOG or
ANO_AN1_AN3 then you must measure the voltage that supplied to PIC at pin 11
or 32 and change ADC equation according to it.

PIC16F877A hasnt a float point circuitry so all float calculations handled by
PIC C wusing software and this implies to long execution time and more memory
usage. In project section we introduced a method called integer coding scheme
it can handle any float calculations using simple integer calculations.

11.6 CCP Module:

CCP is stands for Capture/Compare/PWM. PIC16F877A has two CCPs named
as CCP1 and CCP2. This module can operate in one of three modes capture,
compare or PWM. Here we will take PWM only.

11.7 PWM mode:

PWM (Pulse Width Modulation) is a powerful technique for controlling analog
devices like lamps or motors wusing digital signals! By controlling analog
circuits digitally, system costs and power consumption can be greatly reduced.

Simply, PWM is a way of digitally encoding analog signal levels. The duty
cycle of a square wave is modulated to encode a specific analog signal level.
The PWM signal is still digital because, at any given instant of time, the full
DC supply is either fully on or fully off. The voltage or current source is
supplied to the analog load by means of a repeating series of on and off pulses.
The ON-Time is the time duration which the DC supply is applied to the load,
and the OFF-Time is the period duration which that the DC supply is switched
off.

Figure below shows two different PWM signals. One signal shows a PWM
output at a 10% duty cycle. That is, the signal is ON for 10% of the period and
OFF the other 90%. The second signal shows PWM outputs at 50% duty cycle.
These PWM outputs encode two different analog signal values, at 10% and
50% of the full strength. If, for example, the supply is 12V and the duty cycle is
10%, a 1.2V analog signal results. In the other hand on 50% duty cycle the
result is 6V.

ON ON

50% duty cycle OFF

ON-Time OFF-Time

Period (T)

PIC Programming 10% duty cycle] -I oFF 120

I OFF-Time

Mustansiriyah University Electrical Engineering Department

College of Engineering Third Year Class

The next figure demonstrates of applying signals with different duty-

R | |

[U

In the next example PWM technique used to control the speed of a DC motor.
The motor is interfaced to PIC wusing H-bridge. PWM must be used along with
timer 2. The code is full commented and explained.

Note: you can use BD135 NPN BJT (Ic up to 1.5 A) instead of the VN66 FET.

Control DC motor using PWM.

Full speed-> 12 volt

Normal Speed-> 6 volt 12 volt
Low Speed-> 3 volt

also you can choose the direction of rotation:

F : Forward. Q3
. Q1

B : Backward. I[E . E]l
PIC16F877A

13 1 oscucy RBOINT =33 VNeo
i osc:‘m:Lm:r RB1 % @

2 82 % i
T 1= . o
——| RAZIANIVREF ICVREF RES 2 Q2
= ravmavRers RESPGC =2 | VNes I
- RA4ITOCKWC 10UT RBIPGD o=
——] RASIANA/STIC20UT VNE6

3 RCOM1OSOMICK] frmmmie
<1 REOANSRD RCAUT10SICCP2 ’

T RE 1/ANGNTR RC2/CCP1
=] RE2IANTICS RCASCKISCL 5 |
= WetRvppy Rc&so; % T -
BITXICK

el . —

RDOPSPO [?1—

RD1PSP

o

RD3PSP3 il

RD4PSP4 =

RDIPSPT 1

11.8 Interrupts:

Interrupt is a special event forced MPU or MCU to stop their normal execution
and jump to a known location that considered the beginning of a block of code
called Interrupt Service Routine (ISR). And after executing this ISR they return
to their normal execution. Next figure shows that.

if(x > 10)
Qutput_high(pin.....)
1 Code;
ISR \ Code;
Y Interrupt occurred here.
3 || -
Code,
M i
The numbers show the
flow of execution. ¥l

A simple interrupts life cycle.

PIC Programming 121

Mustansiriyah University Electrical Engineering Department

College of Engineering Third Year Class

PIC16F877A has up to 15 different types of interrupts. Table below highlights
the most important interrupts.

Interrupt name (PIC C naming) Description

EXT External edge triggered interrupt on RBO/INT.
RB Any changes on pins <RB7:RB4> from PORTB. Pin must be input.
RDA USART received data. A very useful interrupt.
TIMERX Timer x overflow, where x is equal to 0, 1 or 2.

Before using any interrupt we must enable it and also you must enable a global
interrupt bit called GLOBAL as we will see later. The following functions are
used to enable or disable interrupts:

enable_interrupts(INT_name);

disable_interrupts(INT_name);

Where INT_name is the interrupt name like INT_EXT, INT_RB,

INT TIMER1 and so on..., except GLOBAL it is wused as is. External interrupt

(INT_EXT) has a special feature that its edge is programmed; this means that

we can control the input edge on pin INT/RBO to be either negative or positive.

Example 1: Visitors counter.

Main goal: Dealing with interrupts.

Description: Suppose that you are to design a control system for a library. This control system is
concerned with temperature regulation, cameras, lighting and so on.... And the
library manager requests from you to count the number of visitors that get in the
library. Using the external interrupt, design visitors counter part.

It is clear that cameras need continues controlling (and somehow temperature

and lighting) this situation called event driven. In contrast visitors counter must

be implemented using interrupt driven approach i.e.) each time a visitor enter

the main entrance you must increment a counter by 1.

The schematic is shown in the next page; | use a photo-transistor (or photo-

diode) with an infrared LED (IR transmitter). Infrared LED is always emits a

beam to the photo-transistor so that the default state on pin INT/RBO is high,

and will get to low as long as a person is in the way of it and this implies to
generate INT_EXT interrupt. Code is shown below.

Photo-transistor Infrared LED

INT/RBO ¢ s o — —

A beam of invisible light
PIC16F877A [

#include <16F877A.h>

#FUSES XT,NOWDT

#USE DELAY (CLOCK =4000000)

#include <LCD.c>

int1l6 VisitorsCounter;

#INT_EXT //lyou must use INT_name as a directive before ISR().

void Vcounter() /ISR name

{

/[Code begins here

VisitorsCounter+=1; /increment counter.
lcd_putc("\f# of visitors is\n");
printf(lcd_putc,"%lu till now",VisitorsCounter); //Display it.

}
PIC Programming 122

Mustansiriyah University Electrical Engineering Department

College of Engineering Third Year Class

void main()
{
enable_interrupts(INT_EXT);//fenable external interrupt.
enable_interrupts(GLOBAL); //enable global interrupt bit.
ext_int_edge(H_TO_L); //State the edge of interruption.
/[(H_to_L) for negative edge and (L_TO_H) for posiyive edge.
lcd_init();
lcd_gotoxy(1,1)
VisitorsCounter = 0; //Clear counter.
while(1)
{
/lyou can write here any event driven actions.
/las temperature or lighting calculation.
/lcontrolling cameras.
}
}
/[Code ends here
Note that ext_int_edge() is a special function concerned with external interrupt
only. To simulate the response of photo-transistor and infrared LED using

proteus or any other simulation program you can use a push button connected to
pin INT/RBO as shown below.

Vece
PULLUP

et

RBO/INT

&
RERR

Important Tips:

e You must write a directive (#) INT_name before each ISR() as shown in
the code.

e You can choose any name for ISR().

e Don't forget to enable the global and the target interrupts.

e You can enable as many as interrupts you need.

PIC Programming 123

