

101

PIC Programming

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

11.1 PIC Microcontroller Unit (PIC MCU):

PIC is generally assumed to mean Peripheral Interface Controller (PIC), it

comes with a variety of families; PIC10 and PIC12 (Base-line), PIC16 (Mid-

range), PIC17 (High-end), PIC18 (enhancement), Finally PIC24 and dsPIC.

Here we will deeply look at PIC16 family and highlights on other families'

features if needed. PIC16F877A is our interest MCU in this family.

11.2 PIC16F877A (PIC16) identification:

PIC16F877A is very cheap, also very easy to be assembled. Additional

components that you need to make this IC work are just a 5V power supply

adapter, a 20MHz crystal oscillator and 2 units of 22pF capacitors.

PIC16F877A is a 40 pin chip, operating at a frequency up to 20MHz, it has five

Bidirectional I/O ports A(6-bit), B(8-bit), C(8-bit), D(8-bit), E(3-bit) mapping

to 33 pins, the following points highlight the most important features:

1- 8Kx14bit Program memory space.

2- Five I\O ports.

3- 8 multiplexed analog ports, with internal 10bit resolution ADC.

4- 15 kinds of interrupts.

5- 256 Bytes of user EEPROM.

6- Two Capture\Compare\PWM modules (CCP).

7- Three timers with different capabilities.

8- RS-232, I2C, and SPI interfaces (USART, MSSP).

9- 368B of RAM.

10- Wide operating frequency DC-20MHz.

11- Wide operating voltage 2.0v – 5.5v.

In addition, they have the following alternate functions:
Port Alternative Uses of I/O Pins No of I/O Pins

Port A

Port B

Port C

Port D

Port E

A/D Converter Inputs

External Interrupt Inputs

Serial Port, Timer I/O

Parallel Slave Port

A/D Converter Inputs

6

8

8

8

3

 Total I/O Pins

Total Pins

33

40

Note that a single pin can have many functions, for example pin2 can be a

digital I/O (RA0) or analog input (AN0); the function of the pin will be

102

PIC Programming

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

controlled using software, figure 11.1 illustrates the PIC16F877A layout in

more details.

PIC16F877A as other PIC families is implemented using RISC approach, with

only 35 instructions; you can build great projects, security, control, talking with

GSM system, linking to the internet, communicating with PCs and more.

Fig. 11.1: PIC16F877A Pins Layout.

Many engineers and developers choose it in their projects and designs for three

main reasons:

1. PIC16F877A comes with a variety of embedded modules.

2. PIC16F877A is considered a low cost MCU.

3. It has wide supporting articles in the internet.

The F letter in its name stand for Flash technology, Flash EEPROM, a version

of EEPROM memory, has become popular in microcontroller applications and

is used to store the user program. Flash EEPROM is nonvolatile and usually

very fast. The data can be erased and then reprogrammed using a suitable

programming device thousands and thousands of times. Letter A at the end of

PIC16F877A means that this MCU is an Advanced and an improved version of

a previous MCU i.e. PIC16F877.

With 8K program memory, PIC16F877A can store and run programs ranges

from simple (a few lines), mid, up to complex programs with many hundreds of

lines, also 368B of general-purpose registers (GPR) i.e., user RAM; this size of

temporary storage area can maintain and take complex operations either

arithmetic or logic, float or integer, strings or characters.

Knowing the internal architecture of any MCU is a must if you want to use

assembly for writing programs (in ES terminology called Firmware), contrarily

of using a high level language like C; a very little architecture knowledge is

needed to write a perfect firmware.

Finally, all hardware, software aspects and the embedded modules of

PIC16F877A will be taken and explained using examples and some projects.

103

PIC Programming

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

11.3 Digital I/O (Part One):

The first step for mastering any MCU is having a knowledge of how to use pins

for digital input and output, as we say previously PIC16F877A has 33 I/O pins

partitioned into 5 ports and each port has a specific number of pins i.e. A(6),

B(8), C(8), D(8) and E(3) as shown in figure below, note that we can access the

port as a whole or simply treating each pin individually.

Note: the term bit mode will be used when dealing with a single pin either for

input or output, for ports we will use byte mode term; although ports A and E

have less than 8 bits I/O.

PIC C compiler comes with a variety functions for dealing with digital I/O for

ports and pins, table below shows the most important functions, all of these

functions and more will be handled and explained using examples.

In this section many examples and peripherals will be examined:

1. Using Output function: This example shows how to use simple digital

output functions in bit mode, time delay functions, and show many of

Proteus aspects, each line in this example is explained in detail.

2. Using I/O functions: Shows more digital I/O functions, more peripherals.

3. Interfacing with 7-segment display: More H/W, more S/W, but friendly

more; in overall: good interfacing and programming practice.

Each example will explain something either for PIC, compiler, or Proteus. The

code of the first example explained line by line, so I will step over any similar

lines in the next examples either in this section or other sections.

11.3.1 Using Output functions:

Example name: Flashing LED.

Main goals: Introduction to PIC C and Proteus, using bit mode functions.

DESCRIPTION: A LED (Light Emitting Diode) is connected to PIC16F877A

at pin RB7, initially it will be ON, and after a delay of 0.5

second its state will be changed to OFF, then after half of

second too; it will be toggled to ON and so on……., in other

words the state of the LED will be changed every 0.5 second.

104

PIC Programming

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

Figure 11.2: Flashing LED code and layout.

11.3.2 Modifications:

1. If we want to use pin RC3 instead of RB7 then, write down lines before

and after modifications.

Before modification (line or keyword) After Modification

set_tris_b(0x7F) → set_tris_c(0xF7)

pin_b7 → pin_c3

2. Use another equivalent functions that included in PIC C to perform the

same operation with one second delay, write down lines before and after

modification, suppose that the LED is connected to pin RD2.

Before modification After Modification

set_tris_b(0x7F) → set_tris_d(0xFB)

output_high(pin_b7) → output_bit(pin_d2,1)

delay_ms(500); → delay_ms(1000);

output_low(pin_b7) → output_bit(pin_d2,0)

3. Example One: Suppose now that there are 8 LEDs connected to port D, LED0 on RD0, and

LED1 on RD1 and so on…, as shown below. Write down a code that performs a nibble (4

bit) toggling, if LED0 to LED3 are ON then LED4 to LED7 are OFF and vice versa, with

300mS delay, note that all pins of port D must be output, and you must deal with 8 bits(one

Byte) at a time.

#include <16F877A.h>

#FUSES XT

#USE DELAY(CLOCK = 4000000)

//=========================

void main()

{

 set_tris_b(0x7F);

 while(1)

 {

 output_high(pin_b7);

 delay_ms(500);

 output_low(pin_b7);

 delay_ms(500);

 }

}

105

PIC Programming

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

Note: output_X(BYTE) is a function that deals with the whole port. X: A,B,C,D, or E

11.3.3 Using I/O functions:

Note: I will explain the new lines of code only, any lines explained previously

will not be handled.

In the previous example we show how to use digital output functions in bit

mode only, also in the modification part for the same example we highlight

some of byte mode topics. The next example explains how to use simple digital

I/O functions either in bit mode, or in byte mode.

Example Two: Port reflection.

Description: 8 LEDs are connected to port D and 8 switches to port B.

Port D(LEDs) must reflect port B(Switches). For example, if

switches on RB1 and RB6 are high then LEDs on RD1 and

RD6 will be ON too.

From previous description port D must be output and port B must be input.

Schematic is shown in figure 11.10.

Instead of using 8 LEDs and 8 switches individually, I decided to introduce new

peripherals. LED BAR is working as an array of sequential LEDs it can be seen

in many devices as a graphical guide to demonstrates a level of some factor

such as volume (Sound level) in stereos or recorders, velocity in cars,

temperature and so on….., also DIPS (Dual In Package Switch) is an array of

switches and same as a switch it must be pulled-up or pulled-down, it has many

advantages such that simplicity of wiring and small size.

#include <16F877A.h>

#FUSES XT

#USE DELAY(CLOCK = 4000000)

Void main()

{

 set_tris_d(0x00); //PORT D is output

 while(1)

 {

 output_d(0x0F); //LEDs 0,1,2 and 3 are ON

 delay_ms(300);

 output_d(0xF0); //LEDs 4,5,6 and 7 are ON,

 // others are OFF.

 delay_ms(300); //300 mS delay time.

 }

} //end main.

106

PIC Programming

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

Figure 11.3: I/O schematic layout.

Pulled-up means that the output of the switch is normally high and it goes to

low whenever it pressed; reset button must be pulled-up. In pulled-up switches

the resistors must be connected to VCC from one side and to the target pin and

button from the other side; as shown above, in pulled-down, just, replace VCC

with GND and vice-versa.

The code of port reflection is as follows:
//Code begins here:

#include <16F877A.h>

#FUSES XT

#USE delay (clock = 4000000)

void main()

{

 //Define variables

 char x;

 set_tris_B(0xFF); //PORTB is input.

 set_tris_D(0x00); //PORTD is output.

 output_D(0x00); //Clear PORTD

 while(1)

 {

 x = input_B(); //Read PORTB

 output_D(x);

 }

}

Note: delay function could be appended to the above code with appropriate

time delay.

107

PIC Programming

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

11.3.4 Modifications:

1. Rewrite down the while(1)'s body using one line with full optimization

i.e. less variables, calculations, instructions….

output_D(input_B()); //No needs for variables.

2. As you note the above code deals with ports atomically (as a whole),

either output or input in byte mode, write down the equivalent code of

while(1)'s body using bit mode only.
//We can read pin status using input(pin) function, it returns 1

//for high voltage and 0 for low voltage.

output_bit(pin_D0, input(pin_B0));

output_bit(pin_D1, input(pin_B1));

output_bit(pin_D2, input(pin_B2));

 . //repeated sequentially …..

 . //until reaches:

output_bit(pin_D7, input(pin_B7));

11.3.5 Interfacing 7-segment display:

Before programmable LCDs (Liquid Crystal Display), the dominant display

device for any embedded system was 7-segment display, and till now you can

see it in many systems such that prayer clocks in mosques, customers counter in

restaurants, Microwaves timers, fridges temperature viewer, any MPUs or

MCUs kit and many other devices. 7-segment can be manufactured in many

ways but the most popular is LED approach. Engineers and developers prefer

LED 7-segment for many reasons as:

• Low cost.

• Low power consumption.

• Illuminating device.

7-segment display is simply 7 LEDs arranged somehow to demonstrate any

BCD or even Hexadecimal number, some of them comes with dot operator

called decimal point (DP), and some are manufactured for a specific system as

clock organization. Figure 11.11 shows the general layout for any 7-segment

display, from this figure each letter (from a to g) demonstrates a LED so there

are 7 main LEDs or segments; indeed if we ignore the decimal point.

Figure 11.4: A common cathode 7-Segment display layout.

7-segment display comes in two main parts; common cathode or common anode,

common cathode as shown in above figure means that all LEDs are common in

GND so to illuminate any segment (LED) we must feed it with 5 volt, in contrast

of common anode, all segments common in VCC; so for illumination any segment 0

volt must be fed to this segment.

108

PIC Programming

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

Now suppose that we need to display number 0 on a common cathode 7-seg then

we must feed segments a, b, c, d, e and f with VCC and segment g with GND. A

second example, if we want to display number 2 then a, b, g, e and d must be in a

high voltage, c and f must be in low voltage.

In general, the main task for 7-seg is to display any hexadecimal number, and as

we know hexadecimal digits is 4 bit long so we must find a method to convert 4 bit

digit to 7-seg code. Actually, there are two solutions for this problem, the first by

using a dedicated IC or by building your own circuitry I prefer to call this a

hardware solution (BCD to 7-SEG) decoder. The second is by using a piece of

code that stored in the same PIC to do this job i.e. Convert from 4 bit digit to 7-seg

code, I called this method a software solution (look-up table).

Also along with 7-segment display (output device); I will introduce an input device

named thumbwheel. is a BCD, octal or hexadecimal input device, it is somewhat

user friendly, so user Thumbwheel can scroll down or up a wheel until reach the

target number and the number's code will be generated automatically and latched

into output pins. Thumbwheels are mainly found in PLCs (Programmable Logic

Array).

Example Three: BCD to 7-segment.

Description: Read a BCD thumbwheel value that connected on

<RA0:RA3> and display it on 7-segment connected on

<RD4:RD7>.

Schematic is shown in above figure, code is shown below.
//Code begins here:

#include <16F877A.h>

#FUSES XT, NOWDT

#USE delay (clock = 4000000)

void main()

{

 //Initialize SFRs (Special Function Registers)

 set_tris_A(0x0F); // Port A is input for A0-A3

 set_tris_D(0x0F); // Port D is output for D4-D7

 output_d(0x00); //Clear PORTD

 while(1)

 {

 output_bit(pin_d4, input(pin_A0));

109

PIC Programming

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

 output_bit(pin_d5, input(pin_A1));

 output_bit(pin_d6, input(pin_A2));

 output_bit(pin_d7, input(pin_A3));

 }

}

Note: delay function could be appended to the above code with appropriate

time delay.

As you expect from example description <RA0:RA3> must be input and

<RD4:RD7> must be output, so because of partitioning ports to input and

output i.e. <RD0:RD3>, RA4 and RA5 are input pins, we shouldn't write to

port D as a whole, and if we reads port A we must ignore excessive bits or read

it in using bit mode functions. I used bit mode function especially for port D

because it is divided into input and output so if I used byte mode function say

output_D(BCDnum) maybe I will fall in a trouble with the devices that

connected to other pins in port D; if they are exist.

NOWDT is a new fuse introduced in the previous code, WDT is stand for

Watch Dog Timer, it is an internal timer if enabled it begins running with PIC's

program until reach some defined value then a software RESET signal will be

generated forcing PIC to reset. In other words the watchdog timer is designed to

automatically reset the MCU on program malfunctions, by stopping or getting

stuck in loop. For example suppose that the value of WDT time-out is 18m

second (Typical period) and in the worst case the program needs 10m second to

complete one turn of execution then if the execution time takes more than this

value means that the program is getting stuck or freeze, and as we mention after

18ms.

WDT time-outs and the MCU forced to reset. In fuses line NOWDT means it

is disabled, but writing WDT only will enable it (by default it's enabled).

Finally, if WDT is enabled then it should be regularly reset at the beginning of

while(1) loop; in PIC C restart_wdt() must be called.

The above example stand on hardware solution so 74LS48 IC is used to convert

BCD code to 7-segment, you can simply build your own combinational

circuitry using simple digital logic design. For more details of 74LS48 IC refer

to its datasheet.

Software solution will be handled in the next example.

Example Four: Hexadecimal Up-Down counter.

Main goals: Interface 7-segment with PIC directly using software

solution, more PIC C topics and programming practices.

Description: Read the state of RB7 pin, if it's high then begin counting up

on a 7-segment that connected directly to portD, else count

down. Counts must be in hexadecimal.

Schematic is shown below.

110

PIC Programming

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

As you expect from example description port D is output and pin RB7 is input.

I think that the program is straightforward.

Referring to figure in page 98, if we imagine that each segment corresponds to

one bit, so segment a is the least significant bit and g is the most, then to

display number 0; <a,b,c,d,e,f> must be one and <g> th must be 0 this means

0111111 in binary and if we suppose that the 8 bit is don't care (set to 0) then

this binary numbers corresponds to 0x3F in hexadecimal; in the code it is

considered the first element in an array. In the same manner we can find any

digit or symbol and include it into the same array, then we can consider this

array as a lookup table and map our target digit to it, for example the code of

number 0 is stored in location 0, number 1 in location 1 and so on…….

Note that the variable i of the for() loops is signed integer, the reason behind

that is the condition of the first for() loop (i >= 0), this condition remains true

until i becomes a negative number, if we use an unsigned integer then this

condition will remain true forever i.e. i is always positive between 0 and 255.

Code is shown below.
//Code begins here:

#include <16F877A.h>

#FUSES XT, NOWDT

#USE DELAY (CLOCK = 4000000)

char code7seg[16] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,

0x7F,0x6F,0x77,0x7C,0x39,0x5E,0x79,0x71};

void main()

{

 signed int i;

 set_tris_d(0);

 set_tris_b(0x80); //RB7 is input.

 output_d(0); //Clear portD

 while(1)

 {

 switch(input(pin_B7))

 {

 case 0:

 for(i = 0x0F; i >= 0; i--){

 output_d(code7seg[i]);

111

PIC Programming

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

 delay_ms(500);

 }

 break;

 case 1:

 for(i = 0; i<= 0x0F; i++){

 output_d(code7seg[i]);

 delay_ms(500);

 }

 break;

 }//end switch

 }

}//end main

//Code ends here.

H.W2:

Q1)Reprogram example four to count up or down decimal numbers (0 to 9)?

 hint: use look-up table.

Q2)Redesign example three without using BCD thumbwheel to count up decimal

numbers (0 to 9) with 0.5sec delay between each count ?

 hint: use 74LS48 IC.

11.4 Digital I/O (Part 2):

In previous part we take simple digital I/O programs with very simple

peripherals like LEDs, switches, 7-segments display. Now we will take the

same digital I/O functions, but applying them to another complicated

peripherals (Devices). Two devices will be explained in this part: keypad and

LCD also we will show how to utilize from internal EEPROM memory.

11.4.1 Keypad:

Keypad can be considered as a small keyboard, it comes with many embedded

systems as a standard input device such as Phones either telephones or cell

phones, Calculators, Microwaves, Security systems, Remote control modules

and many more…., figure below shows a 4x3 and a 4x4 keypads.

Push button is the main component for any keypad, 16 push buttons for 4x4, 12

for 4x3 keypads and so on. These push buttons are connected using matrix

approach, so we can consider any keypad as a two dimensional array. For

example, a 4x3 keypad has 4 rows and 3 columns, in figure above rows are

112

PIC Programming

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

named A, B, C, D and columns 1, 2, 3. Matrix connection improves the

connectivity and reduces the number of used pins, i.e. if we connect 16 buttons

to MCU directly then we need 16 input pins and this implies more wiring, in

the other hand if we connect them as a matrix then only 8 pins are needed with

less wiring. Figure below shows the internal connection of a 4x4 keypad using

matrix approach.

A scanning method (will be explained using comments in code) is used to get

any pressed key, also either rows or columns (according to scanning method)

must pull-ups.

11.4.2 LCD:

LCD (Liquid Crystal Display) is considered the dominant of display devices in

embedded system now. It comes with a variety flavors such as 7-segment,

Textual, Graphical and Dot matrix. LCDs exist in many commercial systems as

a standard output device like Cell phones, Laptops, Digital multi-meters,

Digital cameras…. and in general; most of MCUs applications.

Here we concerned in Textual LCD with integrated HD44780 controller only,

note that most of commercial LCDs are based on this controller. The purpose of

HD44780 is making an interface between LCD and any MCU for both

hardware and software.

Table below shows different models of LCDs that use a built in HD44780.

Figure below shows LM016L and LM018L LCDs layouts.

Fortunately, PIC C has a built in libraries for LCDs based on HD44780

controller. The following example shows how to connect and program

PIC16F877A with 4x4 keypad and LM016L.

113

PIC Programming

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

Example name: Echo program.

Main goal: How to deal with keypads and LCDs.

Description: waits for a key, when pressed print it out to LCD.

Circuit connections are shown below, note that connections between LCD and

PIC are implemented according to LCD's library (...\PICC\Drivers\LCD.c).

Code is shown in the next page.

#include <16F877A.h>

#FUSES XT, NOWDT

#USE DELAY (CLOCK = 4000000)

#include <LCD.c> //LM016L library

/* LCD connections

 D0 -> E, D1 -> RS, D2 -> RW

 D4 -> D4, D5 -> D5, D6 -> D6, D7 -> D7

*/

//Keypad connection:

#define col0 PIN_B0

#define col1 PIN_B1

#define col2 PIN_B2

#define col3 PIN_B3

#define row0 PIN_B4

#define row1 PIN_B5

#define row2 PIN_B6

#define row3 PIN_B7

char getKey()

{

 //Columns are output, Rows are input.

 //rows are pulled-up, and PIC always reads them high unless a key is pressed.

 do

 {

 output_low(col0);output_high(col1);output_high(col2);output_high(col3);

 if(!input(row0)){

 while(!input(row0)); //wait until the pressed key is released.

114

PIC Programming

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

 return '7'; //Key[0][0] in our keypad

 }

 if(!input(row1)){ while(!input(row1)); return '4';} //key[1][0]

 if(!input(row2)){ while(!input(row2)); return '1';} //key[2][0]

 if(!input(row3)){ while(!input(row3)); return 'c';} //key[3][0]

 output_high(col0);output_low(col1);output_high(col2);output_high(col3);

 if(!input(row0)){ while(!input(row0)); return '8';}

 if(!input(row1)){ while(!input(row1)); return '5';}

 if(!input(row2)){ while(!input(row2)); return '2';}

 if(!input(row3)){ while(!input(row3)); return '0';}

 output_high(col0);output_high(col1);output_low(col2);output_high(col3);

 if(!input(row0)){ while(!input(row0)); return '9';}

 if(!input(row1)){ while(!input(row1)); return '6';}

 if(!input(row2)){ while(!input(row2)); return '3';}

 if(!input(row3)){ while(!input(row3)); return '=';}

 output_high(col0);output_high(col1);output_high(col2);output_low(col3);

 if(!input(row0)){ while(!input(row0)); return '/';}

 if(!input(row1)){ while(!input(row1)); return '*';}

 if(!input(row2)){ while(!input(row2)); return '-';}

 if(!input(row3)){ while(!input(row3)); return '+';}

 }while(1);

}

The above piece of code is concerned with including LCD's library and

implementing a function getkey() (more professional 4x4 keypad functions

found in www.ccsinfo.com/forum) to read a key from keypad when pressed.

As you see this function return the ASCII code for the key, you can modify the

returned value to any type (e.g. int, BYTE...) so every returned value has its

meaning. Also you can change the port or pins that used by keypad, easily by

changing each pin located in define lines.

Main function (main()) is shown below.
void main()

{

 char key;

 set_tris_b(0xF0); //configre keypad Columns <RB0:RB3>, Rows <RB4:RB7>

 output_b(0xF0);

 lcd_init(); //Initilize LCD.

 lcd_gotoxy(1,1); //Set cursor.

 lcd_putc("... Welcome ...");

 delay_ms(1500);

 lcd_putc('\f');

 while(1)

 {

 key = getkey();

 delay_ms(50);

 if(key != 'c')

 printf(lcd_putc, "%c", key);

 else lcd_putc('\f');

 }

}

The code is straightforward and easy to understand.

LCD's functions are summarized in table U.

115

PIC Programming

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

PIC16F877A has internal pull-ups resistors on <RB4:RB7>. We can utilize this

feature when using a keypad in our design. To activate it just write the

following line: port_b_pullup(true) under set_tris_b(0xF0). Also you must

modify your circuit by removing all pull-ups resistors on <RB4:RB7>.

11.4.3 Internal EEPROM:

As we say in section 2, PIC16F877A has an internal 256B EEPROM. This

memory is used to store any permanent data (e.g. system settings, passwords…)

that must remain when the system is reset or even when shut down, also this

data can be modified at run time.

PIC C gives us two main functions for writing on or reading from internal

EEPROM:

1. write_eeprom(address, data)//writes data(one byte) to a specified address(one byte).

2. read_eeprom(address)//returns one data byte from a specified address(one byte).

11.5 ADC Module:

ADC is stands for Analog to Digital Converter. It is used to convert any analog

signal to digital data so that it can be stored and manipulated digitally. Digital

voltmeter is a good example it simply takes analog reading (Voltage) and

converts it to digital using ADC then by making simple calculations on this

digitized value we will have a digital reading corresponds to the original

analog, now we can store it, display it on a 7-segment or LCD, send it to PC as

we will see later and the most important we can modify and process this digital

data. And same as digital voltmeter procedure we can handle any analog input

such as temperature, pressure and so on…

PIC16F877A has 8×10bit multiplexed ADC channels (AN0-AN7) mapped to

port E and port A except RA4. Next figure shows an abstraction view for ADC

module.

116

PIC Programming

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

As you note from previous figure the result of conversion is 10-bit width and

this means that the result of conversion is a value between 0 and 210-1 or

[0,1023]. For example if we use 5volt as reference voltage then analog input

should be in TTL level (ranges from 0 and 5volt) and in this case 0volt analog

corresponds to 0 digital in result and 5volt analog corresponds to 1023 digital in

result. In real application analog input is unknown and at the same time it is our

target. The procedure for calculating this value is straightforward. Firstly, make

a conversion to get a digital value that corresponds to analog input. Secondly,

make a reverse calculation for the unknown analog voltage as follows (note

that the default value for Vref is VDD voltage at pin 11 or 32, in general it is 5v):

𝑉𝑟𝑒𝑓 → 1023

𝐴𝑛𝑎𝑙𝑜𝑔𝑢𝑛𝑘𝑛𝑜𝑤𝑛 → 𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝐾𝑛𝑜𝑤𝑛

From above expression: 𝐴𝑛𝑎𝑙𝑜𝑔𝑢𝑛𝑘𝑛𝑜𝑤𝑛 =
𝑉𝑟𝑒𝑓

1023
× 𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝐾𝑛𝑜𝑤𝑛

NOTE: PIC C provides us with two choices for ADC manipulation either 8-bit

(ADC=8) or 10-bit (ADC=10). Above equation uses 10-bit, if we use 8-bit then

we must divide by 255 (28-1) rather than 1023 (210-1).

To use ADC module the following steps must be applied:

Once you configure the ADC (first 3 steps) you can read the converted value.

The first 3 steps can be written one time in the main() and before while(1).

You can pass other parameters for the PIC C code shown above, we will take some of

them using examples.

Two examples will be taken: first, building a digital voltmeter. Second,

measuring temperature and displaying it on LCD.

Example 1: TTL digital voltmeter.

Main goal: How to deal with ADC module (10bit resolution).

Description: reads a voltage ranges from 0 to 5 volt and display it on LCD.

117

PIC Programming

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

As shown above a variable resistor is used to choose a voltage from 0 to 5v.

Code is shown below.
#include <16F877A.h>

#DEVICE ADC=10 // return 10 bit(FULL RESOLUTION) from ADC, Will be explained later.

#FUSES XT // Crystal osc <= 4mhz.

#FUSES NOWDT // No Watch Dog Timer.

#FUSES NOPROTECT // Code not protected from reading.

#USE DELAY(CLOCK = 4000000)

#include <lcd.c>

void main()

{

 int16 digitalValue; //16 bit integer, to store the ADC result (10bit).

 float voltage;

 setup_adc_ports(ALL_ANALOG); //All 8 pins are analog input. Vref is 5v.

 setup_adc(ADC_CLOCK_INTERNAL);//Use internal clock (TAD between 2u-6u Second)

 set_adc_channel(0); //AN0 is the used here pin.

 lcd_init();

 lcd_gotoxy(1,1);

 printf(lcd_putc, "Digital voltmeter");

 delay_ms(1500);;

 while(TRUE)

 {

 digitalValue = read_adc();

 voltage = (float)digitalValue/204; //ADC equation: digitalValue*5/1023

 printf(lcd_putc,"\fVoltage = %1.2f v", voltage);//(%1.2f): display a float with 1

 //integer digit and 2 fractional.

 delay_ms(500); //can be ignored

 }

}

Because ADC ports are configured to ALL_ANALOG we can use any pin from

<AN0:AN7> as analog input, for other parameters show 16F877A.h header file.

In above example we use AN0 and according to that we must read from channel

0 this is done using set_adc_channel(0) line. Suppose that AN5 is used then

instead of passing 0 we must pass 5 i.e.) set_adc_channel(5). TAD is the time

required from ADC to digitize one bit (at minimum, it must be 1.6uS). By

choosing ADC_CLOCK_INTERNAL TAD automatically set between 2uS and 6uS.

Example 2: Temperature control system.

Main goals: More about ADC module, dealing with LM35 temperature sensor.

118

PIC Programming

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

Description: Reads a temperature from 0OC and above. If it is less than 22OC send a high signal

from RE0 to operate a heater. If the temperature is more than 27OC send a high

signal from RE1 to operate an air conditioner. Use ADC=8 and Vref = 1v.

We will use LM35DZ temperature sensor, it is a 3 terminal sensor (VCC, GND

and O/P) and it can measure a wide temperature range (from 0OC up to 100OC).

The most important feature (for more features refer to datasheet) that its output

is linear with 10mV/OC. This means that if temperature is 1OC then LM35's

output is 10mV, so and simply:

1𝑂𝐶

10𝑚𝑉
=

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝑆𝑒𝑛𝑠𝑜𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒

And this implies that:

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =
𝑆𝑒𝑛𝑠𝑜𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒

10𝑚𝑉
= (𝑆𝑒𝑛𝑠𝑜𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒) × 100

For example suppose that the output voltage is equal to 250mV then according

to above equations the current temperature is the result of (250×10−3×100) and

this equal to 25OC.

Honestly, there are many types to LM35 like LM35A, LM35C and our sensor

LM35DZ, each one differ from other in temperature range (e.g. LM25C can

measure from -40OC to 110OC) and accuracy.

As you note from description RE0 and RE1 must set to digital output, LM35 is

connected to AN0 and the reference voltage (pin A3) is set to 1v. Schematic is

shown below.

Tip 1: Control system like that is called a regulator system. It is automatically

maintains a parameter at (or near) a specified value; in our example we

maintain temperature.

The interface between PIC (low voltage devices) and heater or air conditioner

(high voltage devices) can be done using any device that makes isolation

between them like relays (certainly with other elements).

Code is shown below.
#include <16F877A.h>

#DEVICE ADC=8 //return 8-bit width. Don't forget to divide digitalValue over 255.

#FUSES XT, NOWDT, NOPROTECT

#USE DELAY(CLOCK = 4000000)

#include <LCD.c>

#DEFINE heater PIN_E0

#DEFINE air_c PIN_E1

void main()

{

 int8 digitlValue; //Store the result of A/D conversion. 8bit is enough.

119

PIC Programming

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

 float temperature;

 set_tris_d(0);

 output_d(0);

 //Initialize ADC module

 setup_adc_ports(AN0_AN1_VSS_VREF); //AN0 and AN1 are analog input pins.Vref at AN3.

 setup_adc(ADC_CLOCK_INTERNAL);

 set_adc_channel(0);

 lcd_init();

 lcd_gotoxy(1,1);

 lcd_putc("Temperature\nControl System");

 delay_ms(1500);

 while(1)

 {

 digitlValue = read_adc();

 temperature = (float)digitlValue / 255; //Apply ADC equ.: digitalValue*Vref/255

 Temperature = temperature * 100; //Apply LM35 equation.

 printf(lcd_putc, "\fT = %2.2f", temperature);

 if(temperature > 27.0)

 {

 printf(lcd_putc, "\nHigh temperature!");

 output_high(air_c); //turn ON air conditioner.

 }

 else if(temperature < 22.0)

 {

 printf(lcd_putc, "\nLow temperature!");

 output_high(heater); //turn ON heater.

 }

 else

 {

 printf(lcd_putc, "\nModerate T..re!");

 output_low(air_c); //turn OFF air conditioner.

 output_low(heater); //turn OFF heater.

 }

 delay_ms(500);

 }

}//end main

In (#DEVICE) directive we use ADC=8 instead of ADC=10 this means that

read_adc() function will return 8-bit only from the converted result and a

variable with int8 type is enough to store this value also instead of dividing by

1023(210-1) in ADC equation ((Vref×digitalValue)/1023) we must divide by 255

(28-1), the overall result is a light calculation but less accuracy.

Pin RA3/AN3 can be used as analog input or reference voltage input. This can

be determine according to the argument that passed to setup_adc_ports()

function. In the above code it is used as Vref . By setting Vref to 1v the final

result will be somewhat more accurate (in examples like this only). To show the

difference you can convert Vref to default VDD (in general 5v) as example 1

and change the ADC equation to ((digitalValue×5)/255). Next table shows some

setup_adc_ports() parameters.

120

PIC Programming

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

NOTE: VDD or VCC means the voltage that fed to PIC at pin 11 or 32; it is

normally 5v but you can choose from 2v – 5.5v (according to PIC

specification). So if you use VDD as Vref for example ALL_ANALOG or

AN0_AN1_AN3 then you must measure the voltage that supplied to PIC at pin 11

or 32 and change ADC equation according to it.

PIC16F877A hasn't a float point circuitry so all float calculations handled by

PIC C using software and this implies to long execution time and more memory

usage. In project section we introduced a method called integer coding scheme

it can handle any float calculations using simple integer calculations.

11.6 CCP Module:

CCP is stands for Capture/Compare/PWM. PIC16F877A has two CCPs named

as CCP1 and CCP2. This module can operate in one of three modes capture,

compare or PWM. Here we will take PWM only.

11.7 PWM mode:

PWM (Pulse Width Modulation) is a powerful technique for controlling analog

devices like lamps or motors using digital signals! By controlling analog

circuits digitally, system costs and power consumption can be greatly reduced.

Simply, PWM is a way of digitally encoding analog signal levels. The duty

cycle of a square wave is modulated to encode a specific analog signal level.

The PWM signal is still digital because, at any given instant of time, the full

DC supply is either fully on or fully off. The voltage or current source is

supplied to the analog load by means of a repeating series of on and off pulses.

The ON-Time is the time duration which the DC supply is applied to the load,

and the OFF-Time is the period duration which that the DC supply is switched

off.

Figure below shows two different PWM signals. One signal shows a PWM

output at a 10% duty cycle. That is, the signal is ON for 10% of the period and

OFF the other 90%. The second signal shows PWM outputs at 50% duty cycle.

These PWM outputs encode two different analog signal values, at 10% and

50% of the full strength. If, for example, the supply is 12V and the duty cycle is

10%, a 1.2V analog signal results. In the other hand on 50% duty cycle the

result is 6V.

121

PIC Programming

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

The next figure demonstrates the effect of applying signals with different duty-

cycles to a lamp.

In the next example PWM technique used to control the speed of a DC motor.

The motor is interfaced to PIC using H-bridge. PWM must be used along with

timer 2. The code is full commented and explained.

Note: you can use BD135 NPN BJT (IC up to 1.5 A) instead of the VN66 FET.

11.8 Interrupts:

Interrupt is a special event forced MPU or MCU to stop their normal execution

and jump to a known location that considered the beginning of a block of code

called Interrupt Service Routine (ISR). And after executing this ISR they return

to their normal execution. Next figure shows that.

A simple interrupts life cycle.

122

PIC Programming

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

PIC16F877A has up to 15 different types of interrupts. Table below highlights

the most important interrupts.

Interrupt name (PIC C naming) Description

EXT External edge triggered interrupt on RB0/INT.

RB Any changes on pins <RB7:RB4> from PORTB. Pin must be input.

RDA USART received data. A very useful interrupt.

TIMERx Timer x overflow, where x is equal to 0, 1 or 2.

Before using any interrupt we must enable it and also you must enable a global

interrupt bit called GLOBAL as we will see later. The following functions are

used to enable or disable interrupts:

enable_interrupts(INT_name);

disable_interrupts(INT_name);

Where INT_name is the interrupt name like INT_EXT, INT_RB,

INT_TIMER1 and so on…, except GLOBAL it is used as is. External interrupt

(INT_EXT) has a special feature that its edge is programmed; this means that

we can control the input edge on pin INT/RB0 to be either negative or positive.

Example 1: Visitors counter.

Main goal: Dealing with interrupts.

Description: Suppose that you are to design a control system for a library. This control system is

concerned with temperature regulation, cameras, lighting and so on…. And the

library manager requests from you to count the number of visitors that get in the

library. Using the external interrupt, design visitors counter part.

It is clear that cameras need continues controlling (and somehow temperature

and lighting) this situation called event driven. In contrast visitors counter must

be implemented using interrupt driven approach i.e.) each time a visitor enter

the main entrance you must increment a counter by 1.

The schematic is shown in the next page; I use a photo-transistor (or photo-

diode) with an infrared LED (IR transmitter). Infrared LED is always emits a

beam to the photo-transistor so that the default state on pin INT/RB0 is high,

and will get to low as long as a person is in the way of it and this implies to

generate INT_EXT interrupt. Code is shown below.

//Code begins here

#include <16F877A.h>

#FUSES XT,NOWDT

#USE DELAY (CLOCK = 4000000)

#include <LCD.c>

int16 VisitorsCounter;

#INT_EXT //you must use INT_name as a directive before ISR().

void Vcounter() //ISR name

{

 VisitorsCounter+=1; //increment counter.

 lcd_putc("\f# of visitors is\n");

 printf(lcd_putc,"%lu till now",VisitorsCounter); //Display it.

}

123

PIC Programming

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

void main()

{

 enable_interrupts(INT_EXT);//enable external interrupt.

 enable_interrupts(GLOBAL); //enable global interrupt bit.

 ext_int_edge(H_TO_L); //State the edge of interruption.

 //(H_to_L) for negative edge and (L_TO_H) for posiyive edge.

 lcd_init();

 lcd_gotoxy(1,1);

 VisitorsCounter = 0; //Clear counter.

 while(1)

 {

 //you can write here any event driven actions.

 //as temperature or lighting calculation.

 //controlling cameras.

 }

}

//Code ends here

Note that ext_int_edge() is a special function concerned with external interrupt

only. To simulate the response of photo-transistor and infrared LED using

proteus or any other simulation program you can use a push button connected to

pin INT/RB0 as shown below.

Important Tips:

• You must write a directive (#) INT_name before each ISR() as shown in

the code.

• You can choose any name for ISR().

• Don't forget to enable the global and the target interrupts.

• You can enable as many as interrupts you need.

