

Mustansiriyah University

College of Engineering

Electrical Engineering Dept.

Asst. Prof. Dr. Ammar Ghalib

Asst. Prof. Dr. Zaid Saleem

Exp. No. 1: LOGIC GATES Logic Laboratory

1

LOGIC GATES

Object: To perform the functions of gates

Theory:

A logic gates is an electronic device that perform a Boolean operations on one or more

inputs to produce an output. There are 4 types of names have been used for the same types of

circuits: digital circuit, switching circuit, Logic circuit. AND gates. Binary logic deals with

variables that take on tow discrete values and with operations that assume logical meaning.

The two values the variables take may be called by different names (e.g. true and false, yes

and no, 1 or 0).

Logic Gates:

1. AND gate: the AND gate is a cct., which gives a high output (logic 1) if

all inputs are high. A dot (.) is used to indicate the AND operation. In

practice, however, the dot is usually omitted.

2. OR gate: the OR gate is a cct., which gives a high output if one or more of

its inputs are high. A plus sign (+) is used to indicate the OR operation.

3. NOT gate: the NOT gate is cct., which produces at its output the negated

(inverted) version of its input logic the cct. Is known as an inverter. If the

input is 𝐴, the inverted output is written as 𝐴 .

4. NAND gate: the NAND gate is a NOT- AND cct., which is equivalent to

an AND cct. Followed by a NOT cct. The output of the NAND gate is

high if any of its inputs is low.

5. NOR gate: the NOR gate is a NOT- OR cct., which equivalent to AND

cct. Followed by a NOT cct. The output of the NOR gate is low if any of

its inputs is high.

6. EX-OR gate: the exclusive –or gate is a cct., which gives a high output if

its tow inputs are different. A circuited plus sign ⊕ is used to indicate the

(EX-OR) operation.

7. EX-NOR gate: the exclusive–NOR gate is a cct., which gives a high

output if its tow inputs are similar.

Exp. No. 1: LOGIC GATES Logic Laboratory

2

The seven gates that are the fundamental logic elements in digital system are illustrated in

Fig. (1.1)

Logic Function
Logic Gate

Symbol
Truth Table

Boolean

Expression

NOT

A Y

Input (A)
Output

(Y)

0 1

1 0

Y=𝐴

OR

NOR

Y1

A
B Y2

A
B

Input Output

A B Y1 Y2

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

Y1= A+B

Y2= A+B

AND

NAND

Y1

A
B Y2

A
B

Input Output

A B Y1 Y2

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

Y1= A.B

Y2= A.B

EX-OR

EX-NOR

Y1

A
B Y2

A
B

Input Output

A B Y1 Y2

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1

Y1= A B

Y1= A B

Fig.(1.1) The fundamental of basic logic gates

The function of the gates described so far can be summarized by means of

the idealized waveform diagrams shown below:

Exp. No. 1: LOGIC GATES Logic Laboratory

3

A

B

A

A+B

A+B

A.B

A.B

A B

A B

Fig.(1.2) Idealized waveforms diagram for two-inputs gates positive logic

 Through there is a large variety of gates, it is often desirable to convert logic

expression into a form suitable for whatever type of gates are available, its

desirable to use one type of gates rather than mix different gates. So it is easy to

design logic cct. using NAND or NOR gates only. NAND gates can be used to

produce any logic function .For this reason, they are referred to as universal gates.

 The NAND gate can be used to generate the (NOT, AND, OR, NOR) functions. An

inverter can be made from NAND gate by connecting all inputs together and creating, in

effect, a single common input as shown in Fig.(1.3-a) for two input gate. An AND function

can be generate using NAND gates, as shown in Fig. (1.3-b) also an OR function can be

produce with NAND gates as illustrated in Fig. (1.3-c).Finally, NOR function is produced, as

shown in Fig. (1.3-d).

Exp. No. 1: LOGIC GATES Logic Laboratory

4

A A

(a)

A

B
A B=A B

(b)

A B=A+B

A

B

(c)

A+B

A

B

(d)

Fig(1.3) Universal application of NAND gates

Procedure:

 By means of using NAND gates, find the truth table of all possible gates shown

in Fig. (1.1).

Discussion:

1. Implement the following functions using:

a. Mixing gates.

b. NAND gates only.

 F1=ABC+CD

 F2= 𝐴𝐵 +BCD+EFGH

2. Implement the following functions using:

a. Mixing gates.

b. NOR gates only.

 F1=A+ 𝐵

 F2=(A+B)(A+C)
3. Using only NOR gates to produce the logic functions of :

a. NOT gate

b. OR gate

c. AND gate

d. NAND gate

4. Determine the output waveform for the cct. Shown in Fig. (1.4) with the inputs as

shown.

Exp. No. 1: LOGIC GATES Logic Laboratory

5

A

B

C

Fig(1.4) Testing a logic circuit using three-inputs

Exp. No. 2: COMBINATIONAL LOGIC CIRCUITS Logic Laboratory

6

COMBINATIONAL LOGIC CIRCUITS

Object:

 To study the axioms defining Boolean algebra and how to represent Boolean

expressions in SOP and POS forms.

Theory:

Digital systems are composed of combinations logic gates described by a truth table

and Boolean expression or a logic symbol diagram.

The fundamental Boolean operations of AND, OR and NOT can be summarized as

follows:

 () ()

 ()

 ()

 () ()

 () ()

 ()

() ()

In combination logic, the output of the circuit depends only on the inputs to the circuit.

Combination logic problems are normally given in the form of logical statements or a truth

table. To design and implement the problem, Boolean logical expressions equations are

derived for the output logic function in terms of the binary variables representing the inputs.

The logic expressions are given either in the form of a sum of products (SOP) of in the form

of a product of sums (POS).

Exp. No. 2: COMBINATIONAL LOGIC CIRCUITS Logic Laboratory

7

CANONICAL FORMS:

 For the table shown below:

Input

X Y Z

Output

F

 0 0 0

0 0 1

 0 1 0

 0 1 1

 1 0 0

 1 0 1

1 1 0

1 1 1

1

0

1

1

0

0

1

1

We can derive the logical expression for the function F:

This expression is called the canonical sum of product. A product term which contains

each of the n-variables factors in either complemented or uncomplemented form called

minterm. So F can be put in other form such as:

 ∑

Since F=1 in rows 0, 2,3,6,7

A logical equation can also be expressed as a product of sums. This done by

considering the combinations for which F=0. From the truth table F=0 in rows 1, 4, 5 hence:

 () () ()

Exp. No. 2: COMBINATIONAL LOGIC CIRCUITS Logic Laboratory

8

The product of sums can be expressed as:

 ∏

A sum which contains each of n variables complement not is called a maxterm.

Procedure:

1. Using Boolean algebra to simplify the following expressions. Then find the truth

table of each after connecting the circuits.

a. () (̅)

b. (̅) (̅ ̅)

c. () ()

d. () ()

 2. Obtain & in the form of

 a. SOP

 b. POS

A B C

 0 0 0

0 0 1

 0 1 0

 0 1 1

 1 0 0

 1 0 1

1 1 0

1 1 1

1

1

1

1

0

1

0

1

1

0

1

0

1

0

1

0

Then simplify & and connect them circuits to verify the operation of both, using NAND

gates only.

Exp. No. 2: COMBINATIONAL LOGIC CIRCUITS Logic Laboratory

9

Discussion:

1. Simplify the following logical expression and implement them using suitable logic

gates.

a. ∑

b. ∏

2. Determine whether or not the following equalities correct:

a. ̅ C

b. ̅() ̅ () ̅ ̅̅ ̅̅

3. Convert the following expressions to SOP forms:

a. (̅)

b. ()(̅ ̅)

4. Write a Boolean expression for the following statement :

F is a "1" if A, B&C are all 1's or if only two of the variable is a"0".

 5. Find F for the following Figure.

B
C
D

A

C

A

A

F

C

D

EXP No. 3: CODE CONVERSION Logic laboratory

01

CODE CONVERSION

Object: To consider various important codes and the logic for converting from one to

another.

Theory:

 As we know, decimal, octal, and hexadecimal numbers can be represented by binary

digits. Not only numbers, but letters and other symbols, can be represented by 1's and 0's.

In fact, any entity expressible as numbers, letters, or other symbols can be represented by

binary digits, and therefore can be processed by digital logic circuits.

 Combination of binary digits that represent numbers, letters, or symbols are digital codes.

In many applications special codes are used for such auxiliary functions as error detection.

BCD code:

 To code the ten decimal digits, ten unique symbols consisting of the binary digits 0&1are

needed. A code of this type, which represents the decimal digits with binary digits, is called a

binary- coded decimal, or BCD. There are several such codes in use. The BCD code of a

decimal number of more than one digit is obtained by replacing each digit by it's4 -bit BCD

code. In general, any binary code used to represent the decimal digit is called BCD. Table

below shows the most general binary codes.

Procedure:

1-Design a logic circuit to convert BCD code to EX-3code using NAND gates only.

2-Use K-map to design a logic circuit to convert from 5421 code to 8421 code using NAND

gates to check the logic design.

3-Design a logic circuit to obtain a Gray code from a BCD code using proper logic gates.

EXP No. 3: CODE CONVERSION Logic laboratory

00

Decimal

Weighted codes Unweighted code

8 4 2 1 2 4 2 1 5 2 1 1 7 4 2 1 Ex-3 Gray

0

1

2

3

4

5

6

7

8

9

0000 0000 0000 0000

0001 0001 0001 0001

0010 0010 0100 0010

0011 0011 0110 0011

0100 0100 0111 0100

0101 1011 1000 0101

0110 1100 1001 0110

0111 1101 1011 1000

1000 1110 1110 1001

1001 1111 1111 1010

0011 0000

0100 0001

0101 0011

0110 0010

0111 0110

1000 0111

1001 0101

1010 0100

1011 1100

1100 1101

Table (3.1) Binary codes

Discussion:

1. Convert each Gray code to binary:

a.1010 b.00010 c.11000010001

2. Convert each EX-3 code number to decimal:

 a.0011 b.1001 c.10000101

3. Design a logic circuit with an output (F) and four bit input A, B, C&D. The output

(F=1) when the input is BCD number and (F=0) otherwise.

4. Design a logic circuit which converts a BCD code to 6311 code using NAND gates only.

Exp. No. 4: BASIC ARITHMETIC OPERATIONS Logic Laboratory

21

BASIC ARITHMETIC OPERATIONS

Object: To design and implement logic circuit for basic arithmetic operations.

Theory:

 An important part of the central processor of any computer is the arithmetic unit in

which binary addition, subtraction, division and multiplication are carried out.

Subtraction however can be performed by adding complemented numbers.

Multiplication can also be performed by repeated addition .Division can be also

achieved by repeated subtraction. This means that the adder is the centre piece of

the arithmetic unit. There are two types of the addition:

1. Half - Adder (H.A) :

 It is a device that adds two bits of binary data. In other words, the half adder

performs the operation s:

 0 + 0= 0

 0 + 1= 1 ……………. (4.1)

 1 + 0= 1

 1 + 1= 0 , Carry = 1

 The last operation is, of course, 1+1=0, which is 0 with a carry 1 to the next bit

position. Equation (4.1) may be expressed n the form of a truth table as shown in

table (4.1)

 Input Output

A B S C

0

0

1

1

0

1

0

1

0

1

1

0

0

0

0

1

Exp. No. 4: BASIC ARITHMETIC OPERATIONS Logic Laboratory

21

 From the truth table we see that

 ̅ ̅ …….. (4.2)

 B

and …….. (4.3)

 So the H.A adds only two bits at a time, so that it cannot be used to add two

bits and a carry bit from a previous step, as is generally required in adding tow

binary numbers the symbol for the H.A is given in Fig (5.1.b).

A

B
S

C

H.A

A BS=

C=AB

A

B

 (a) (b)

Fig. (4.1) (a) Half Adder circuit diagram

 (b) Half Adder block diagram

2. Full- Adder (F.A):

 A half adder is not very useful on its own, and a third input is often

required for carries. Adding numbers that have two bits or more requires a full

adder (F.A) which is capable of the previous order. The symbol of full-adder is

shown in Fig. (4.2).

 Fig. (4.2) Full –adder block diagram

Exp. No. 4: BASIC ARITHMETIC OPERATIONS Logic Laboratory

21

Where:

 Ci: carry- in from the previous addition.

 Co: carry- out to the next addition.

 The truth table for a full-adder is (F.A) is determined by the 8 possible combinations

of the inputs A, B and Ci, the corresponding values of S and Co is given in table (4.2)

from which we may write

 ……… (4.4.a)

 () ̅ ̅ ……… (4.4.b)

 ̅ ……… (4.5.a)

 ……… (4.5.b)

Input

A B

Output

 S Co

 0 0 0 0 0

 0 0 1 1 0

 0 1 0 1 0

 0 1 1 0 1

 1 0 0 1 0

 1 0 1 0 1

 1 1 0 0 1

1 1 1 1 1

Exp. No. 4: BASIC ARITHMETIC OPERATIONS Logic Laboratory

21

Procedure:

A. Half-Adder (H.A)

1. Implement a H.A logic equation for sum and carry using NAND

gates only then verify the truth table.

2. Design a Half-Subtractor (H.S) network, and verify its truth table.

B. Full-Adder (F.A):

1. Verify the truth table of F.A by means of using NAND gates only.

2. Design a Full-Subtractor (F.S) network, and verify its truth table.

Discussion:

1. By means of H.A block diagram build a F.A.

2. By means of H.S block diagram build a F.S.

3. Build a H.A using NOR gates only.

4. Use only two 2-inlput EX-OR gates and three 2-input NAND gates

to build F.A.

5. Use the block diagrams of F.A to show the addition process of the

binary numbers110&111.

6. By means of F.A block diagram, EX-OR gates and external switch x,

design a 4-bit adder/subtractor.

7. What is meant by Parallel binary adders? For the parallel adder

shown in Fig (4.3), determine the sum by analysis of the logical

operation of the circuit.

1 1 1 0 1 0 1 1

0

Fig. (4.3)

Exp. No. 5: COMPARATORS Logic Laboratory

61

COMPARATORS

Object: To study the operation of magnitude comparator.

Theory:

A magnitude comparator is a combinational circuit that compares two numbers A and

B and determines their relative magnitudes. The outcome of comparison is specified by three

binary variables that indicate whether A<B, A=B, or A> B. the EX-OR gate is a basic

comparator because it's output is 1 if it's two input bits are not equal and is 0 if the inputs are

equal. Fig (5-1) shows the EX-OR as a 2-bit comparator.

Fig.(5-1) Basic comparator operation.

The circuit for comparing two n-bit numbers has 2
2n

 entries in the truth table, and

becomes too cumbersome even with n=3. Table (5-1) shows how to compare two numbers

having 1-bit.

INPUTS OUTPUTS

A B Z1

A=B

Z2

A<B

Z3

B>A

0 0 1 0 0

0 1 0 0 1

1 0 0 1 0

1 1 1 0 0

Table (5-1)

 From table (5-1), using minterms, we see that:

BABAZ ..1

BAZ .2 ………. (5-1)

BAZ .3

0

0
0

0

1
1

Indicates the input bits

 are equal

Indicates the input bits

 are not equal

1

1
0

1

0
1

Indicates the input bits

 are equal

Indicates the input bits

 are not equal

Exp. No. 5: COMPARATORS Logic Laboratory

61

From these expressions we may obtain the digital circuit by using AND, OR, and

NOT gates. The result is shown in Fig (5-2).

Fig.(5-2) one digit comparator.

The general algorithm for designing a n-bit comparator has the following steps (i.e. 4-

bit)

a) Write the coefficients of the number as follows:

A=A3 A2 A1 A0

 B=B3 B2 B1 B0

 Where each subscribed letter represent one of the digits in the number.

b) For A=B (A3=B3, A2=B2, A1=B1, A0=B0), this can logically be expressed with an

equivalence function:

 iiiii BABAx .. i=0, 1, 2, 3,….., n ……. (5-2)

 Where xi=1 only if the pair of bits in position i are equal.

In order to determine whether A<B or A>B, compare the relative magnitudes of pair

of significant digits starting from the MSB position. If the two digits are equal, we compare

the next lower significant pair of digits. This comparison continues until a pair of unequal

digits is reached. If the corresponding digit of A is 1 and of B is 0, we conclude that A<B. if

the corresponding digit of A is 0 and that of B is 1, we have A>B.

The sequential comparison can be expressed logically by;

(A<B)= 00123112322333 BAXXXBAXXBAXBA

(A>B)= 00123112322333 BAXXXBAXXBAXBA ……. (5-3)

From these expressions, we may obtain the digital comparator circuit as shown in Fig. (5-3).

A
B (A=B)

 (A>B)

 (A<B)

Exp. No. 5: COMPARATORS Logic Laboratory

61

Fig.(5-3) Digital comparator circuit for 2-digit

Procedure:

1. Design a digital comparator which compares two binary numbers each with 2-bit, using

truth table method.

2. The waveforms shown in Fig. (5-4), are applied to the comparator, find the output

waveforms?

Fig. (5-4)

Discussion:

1. Given the logic symbol for the 7485 4-bit comparator. Use it to compare the magnitudes

of two binary numbers of:

a) 8-bit

b) 12-bit

(10)

(12)

(13)

(15)

(2)

(3)

(4)

(9)

(11)

(14)

(1)

Comp.

P>Q

P<Q

P=Q

P

Q

(5)

(6)

(7)

>

<
=

Comp.

P0

P1

Q0

Q1

P>Q

P<Q

P=Q

P0

P1

Q0

Q1

1A

0A

G (A<B)

• X1

0B

E (A=B)

L (A>B)

X0

A1

1B

A0

A1

B1

A0

B0

B1

B0

Exp. No. 5: COMPARATORS Logic Laboratory

61

2. For each of the following set of binary numbers, determine the logic states at each point in

the logic symbol of 7485 4-bit comparator.

a) P3 P2 P1 P0=1100

Q3 Q2 Q1 Q0=1010

b) P3 P2 P1 P0=1001

Q3 Q2 Q1 Q0=1101

3. Design a logic circuit to check the equality of two binary numbers of 4 bits, using NAND

gates only.

Exp. No. 6: PARITY GENERATORS/CHECKERS Logic Laboratory

02

PARITY GENERATORS / CHECKERS

Object: To study how to detect the error in the data.

Theory:

Errors can occur as digital codes are being transferred from one point to another

within a digital system or while codes are being transmitted from one system to another. The

errors take the form of undesired changes in the bits that make up the coded information; that

is, a "1" can change to a "0", or a "0" to "1", due to component malfunction or electrical

noise. Many systems, however, employ a parity bit as a means of detecting a bit error.

Binary information is normally handled by a digital system in groups of bits called words. A

word always contains either an even or an odd number of 1's. An even parity bit makes the

total even.

As an illustration of how parity bits are attached to a code word, table (6-1) lists the

parity bits for each BCD code number for both even and odd parity. The parity bit for each

BCD number is in the p column.

Table (6-1)

The parity bit can be attached to the code group at either the beginning or the end depending

on system design.

Notice that the total number of 1's, including the parity bit, is always even for even parity

and always odd for odd parity.

Even Parity Odd Parity

Pe 8 4 2 1 Po 8 4 2 1

0 0 0 0 0 1 0 0 0 0

1 0 0 0 1 0 0 0 0 1

1 0 0 1 0 0 0 0 1 0

0 0 0 1 1 1 0 0 1 1

1 0 1 0 0 0 0 1 0 0

0 0 1 0 1 1 0 1 0 1

0 0 1 1 0 1 0 1 1 0

1 0 1 1 1 0 0 1 1 1

1 1 0 0 0 0 1 0 0 0

0 1 0 0 1 1 1 0 0 1

Exp. No. 6: PARITY GENERATORS/CHECKERS Logic Laboratory

02

Parity Logic:

In order to check for or generate the proper parity in a given code word, a very basic

principle can be used. The sum of an even number of 1's is always zero, and the sum of an

odd number of 1's is always one. Therefore, in order to determine if a given code word is

even, or odd parity, all of the bits in that code word are summed. The sum of two bits can be

generated by an EX-OR gates, as shown in Fig.(6-1-a); the sum of three bits can be formed

by two EX-OR gates connected as shown in Fig.(6-1-b); and so on.

Fig.(6-1)

A typical 5-bit generator / checker circuit is shown in Fig. (6-2).

It can be used for either odd or even parity. When used as an odd parity checkers as

shown, the operation as follows:

A 5-bit code (four data bits and one parity bit) is applied to the inputs. The four data

bits are on the EX-OR inputs, and the parity bit is applied to the ODD input line. When the

number of 1's in the 5-bit code is odd, the ODD output is LOW, indicating proper parity.

When there is an even number of 1's, the ODD output is HIGH, indicating incorrect parity

which is illustrated in Fig.(6-2).

(a) Code Correct

(b) Code Error

0

1

0

0

0 0 Data

bits

Parity

bit

ODD output

ODD

1

1

0

0

0 1 Data

bits

Parity

bit

ODD output

ODD

A

B

C
F

(b) Summing of three bits (a) Summing of two bits

A

B
F

Exp. No. 6: PARITY GENERATORS/CHECKERS Logic Laboratory

00

Similarly, even parity checks are illustrated for both non error and error conditions in

Fig.(6-3).

(a) Code Correct

(b) Code Error

Fig.(6-3)

Procedure:

1. Design an even/odd parity generator for 4-bit data.

2. Design a parity checker circuit for a 4-bit data.

3. Design a logic circuit for a 3-bit message to be transmitted with an even parity bit.

4. Four data bits are to be transmitted. Design a parity bit generator to give an o/p of '1' if the

number of logic 1's in the message is: (i) odd; (ii) even.

Discussion:

1. Attach the proper even parity bit to the following codes:

 a) 11010 b) 1001 c) 0111101

2. Repeat problem 1 for odd parity.

3. Check each of the even parity codes for an error.

4. The waveforms shown in Fig. (6-4) are applied to 4-bit parity logic. Determine the output

waveform in proper relation to the inputs. How many times does even parity occur?

Parity

bit

Data

bits

1

0

0 0 EVEN output

EVEN

1

0

Parity

bit

Data

bits

 0

0

0 1 EVEN output

EVEN

1

0

Exp. No. 6: PARITY GENERATORS/CHECKERS Logic Laboratory

02

 Fig.(6-4)

A

B

C E

D

A

B

C

D

Exp. No. 7: DECODERS & ENCODERS Logic Laboratory

42

 DECODERS & ENCODERS

Object: To study the function of decoder and encoder circuits

Theory:

(A) Decoder:

A decoder is a combinational circuit that converts coded information, such as binary,

into a recognizable form, such as decimal. Fig. (7-1) shows a 2-to-4 line decoder circuit. The

two inputs are decoded into four outputs, each output representing one of the minterms of the

2-input variables. The two inverters provide the complement of the input, each one of the

minterms. However, a 2-to-4 line decoder can be used for decoding any 2-bit code to provide

four outputs, one of each element at the code.

Fig.(7-1) A logic circuit of 2-to-4 line decoder

The operation of the decoder may be further classified from it's input-output

relationships, listed in table(7-1) observe that one output variable are mutually exclusive

because only one output can be equal to 1 at one time.

 INPUTS OUTPUTS

A B D0 D1 D2 D3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

Table (7-1) Truth table of a 2-to-4 line decoder

A
B

BAD .0
•

•
•
•

•

BAD .1

BAD .2

BAD .3

Exp. No. 7: DECODERS & ENCODERS Logic Laboratory

42

(B) Encoder:

The encoder is also a combinational logic circuit; it converts information, such as a

decimal number or an alphabetic character, into some coded form such as binary or BCD.

The octal-to-binary encoder consists of eight inputs, one for each of the eight digits,

and three outputs that generate the corresponding binary number. It is constructed with OR

gates whose inputs can be determined from the truth table given in table(7-2). The lower-

order output bit Z is 1 if the input octal digit is odd. Output X is 1 for octal digits 4, 5, 6 or 7.

Note that D0 is not connected to any OR gate, the binary inputs are all 0's.

The encoder in Fig.(7-2) assumes that only one input line can be equal to 1 at any

time; otherwise the circuit has no meaning.

Fig. (7-2) Logic diagram of Octal-to-binary encoder

Note that the circuit has eight inputs and could have 2
8
=256 possible input combinations.

Only eight of these combinations have any meaning. The other inputs combinations are don't

care conditions. The operation of the encoder listed in table (7-2).

INPUTS OUTPUTS

D0 D1 D2 D3 D4 D5 D6 D7 X Y Z

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

Table (7-2) Truth table of an Octal-to-binary encoder

Z=D1+D3+D5+D7

Y=D2+D3+D6+D7

X=D4+D5+D6+D7

D0

D1

D2

D3

D4

D5

D6

D7

•

•

•
•

•

Exp. No. 7: DECODERS & ENCODERS Logic Laboratory

42

Procedure:

(A) Decoder:

1. Connect the circuit as shown in Fig.(7-1) using NAND gates only. Check it's truth

table.

2. Design a BCD-to-Decimal decoder using NAND gates only.

(B) Encoder:

1. Connect the circuit as shown in Fig.(7-2) using NAND gates only. Check its truth

table.

Discussion:

1. Design a 3-bit binary decoder (3-to-8 decoder), then construct this circuit using NOR gates

only.

2. Design a BCD-to-seven segment decoder (7447 IC).

Exp. No. 8: MULTIPLEXERS & DEMULTIPLEXERS Logic Laboratory

72

MULTIPLEXERS & DEMULTIPLEXERS
 p

Object: To study the function of multiplexer and demultiplexer circuits.

Theory:

(A) Multiplexer (Data selector):

A multiplexer (MUX) is a device that allows digital information from several sources

to be routed onto a single line for transmission over that line to a common destination. The

basic multiplexer, then, has several data input lines and a single output line. It also has

data selector inputs that permit digital data on any one of the input to be switched to the

output line.

A simple multiplexer can be represented by a switch operation that sequentially

connects each of the input lines with the output, as illustrated in Fig.(8-1).

Fig. (8-1) Simple Multiplexer operation

Assume that we have logic levels an indicated on the three inputs.

During time interval T1, input A is connected to the output; during interval T2, input B is

connected to the output; and during interval T3, input C is connected to the output.

The logic symbol for a 4-input multiplexer is shown in Fig.(8-2). Notice that there are

two selection lines because with two selection bits, each of the four data-input lines can be

selected.

Fig. (8-2) Logic symbol for 4-to-1 data selector

HIGH A

LOW B

HIGH C

Inputs

T1

T2

T3

T1 T2 T3

HIGH
LOW

MUX
D0

D1

D2

D3
S0 S1

Data select

Data

Inputs Data Output

Y

Exp. No. 8: MULTIPLEXERS & DEMULTIPLEXERS Logic Laboratory

72

If a binary 0 (S1=0 and S0=0) is applied to the data-select lines, the data on input D0 appear

on the data-output line. If a binary 1 (S1=0 and S0=1) is applied to the data-select lines, the

data on the input D1 is appear on the data output. If a binary 2 (S1=1 and S0=0) is applied, the

data on D2 appear on the output. If a binary 3 (S1=1 and S0=1) is applied, the data on D3 are

switched to the output line. A summary of this operation is given in table (8-1).

 DATA-SELECT INPUTS INPUT

SELECTED S1 S0

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Table (8-1) Data selection for a 4-input Multiplexer

The data output Y is equal to the data input D0 if and only if S1=0 and S0=0;

010 .SSDY

The data output Y is equal to D1 if and only if S1=0 and S0=1;

011 .SSDY

The data output is equal to D2 if and only if S1=1 and S0=0;

012 .SSDY

The data output is equal to D3 if and only if S1=1 and S0=1;

013 .SSDY

These terms are (OR)ed, the total expression for the data output is:

Y= 010 .SSD + 011 .SSD + 012 .SSD + 013 .SSD

The implementation of this equation is shown in Fig. (8-2).

Fig. (8-2) Logic diagram for a 4-input Multiplexer

Y

S0 •

•

•

•

• •
S1

D0

D1

D2

D3

Exp. No. 8: MULTIPLEXERS & DEMULTIPLEXERS Logic Laboratory

72

(B) Demultiplexer:

A demultiplexer (DMUX) basically reverses the multiplexing function. It takes data

from one line and distributes them to a given number of output lines. Fig. (8-3) shows a one-

line to four-line demultiplexer block diagram.

Fig. (8-3) Logic symbol 1-line to 4-line demultiplexer

Fig. (8-4) shows a 1-line-to-4-line demultiplexer circuit. The two select lines enable only one

gate at a time, and the data appearing on the input line will pass through the selected gate to

the associated output line.

Fig. (8-4) A 1-to-4-line demultiplexer

Procedure:

(A) Multiplexer:

1. Connect a circuit of 2-to-1 multiplexer and observe its table.

2. Connect the circuit of Fig. (8-2) and observe its table.

(B) Demultiplexer:

1. Connect the circuit of Fig. (8-4) and observe its table.

DMUX

S0 S1

Data select

Data Output

Lines
Data

Input

S0 •

•

•

•

• •
S1

D0

D1

D2

D3

•

•

•

Data input

Data output

lines

Select

 lines

Exp. No. 8: MULTIPLEXERS & DEMULTIPLEXERS Logic Laboratory

03

Discussion:

1. The data input and data select waveforms in Fig. (8-5) are applied to the multiplexer in

Fig. (8-2). Determine the output waveform in relation to the input.

Fig. (8-5)

2. The serial data input waveform and data selectors are shown in Fig. (8-6). Determine the

data-output waveform for the demultiplexer shown in Fig. (8-4).

Fig. (8-6)

3. Design 8-to-1 MUX and verify its truth table.

4. Design 1-to-8 DEMUX and verify its truth table.

D0

D1

D2

D3

S0

S1

Data input

S0

S1

Exp. No. 9: SEQUENTIAL LOGIC CIRCUITS Logic Laboratory

13

SEQUENTIOL LOGIC CIRCUITS

Object: To investigate the properties of logic circuit configurations possess memory.

Theory:

The logic elements studied in last experiments all required a continuous input level to

operate. Once the input level was removed, the gate or network does not retain its output

condition. Logic gates in other works do not have the property of memory. A machine

often needs additional devices, which have a memory to retain their output states after

the inputs are removed. These devices called, flip-flops, may be combined with non

memory logic gates to form networks capable of controlling industrial machinery,

solving mathematical problems, and storing information. The combination of many such

memory devices with logic gates forms what is known as a sequential logic circuit.

Fig.(9-1a) shows the basic construction of as S-R (set-reset) Flip-flop. Qn indicates

the Q output before the clock pulse is applied and Qn+1 indicate the Q output after the

clock pulse is applied.

Fig.(9-1a) S-R Flip-flop construction

Fig.(9-1b) S-R Flip-flop from two NOR gates truth table

S R Qn Qn+1

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 X

1 1 1 X

Exp. No. 9: SEQUENTIAL LOGIC CIRCUITS Logic Laboratory

13

In S-R Flip-flop truth table Fig.(9-1b), Qn refers to the state of Q before the

application of the inputs, while Qn+1 refer to the state of Q after the application of the

S-R inputs (state of Q` us the complement of that Q)

Hence, the output depends not only on the input (S and R) but also on the previous

state of output (Qn), the don’t care entries in the last two rows reflect the fact that in

normal operation both inputs should not be permitted to be “1” at the same time. These

are two reasons for this restriction, first if both inputs are “1”. Both outputs will be

driven to “0” which violates the basic definition of flip-flop operation which requires

that the output should always be the complement of each other.

Second S and R are “1” at the same time in the input both NOR gate and both

outputs will try, to go to “0”, because of the feedback it is impossible to be “1” at the

same time with the result that the flip-flop will switch unpredictably and may even go

into oscillation. The truth table can be written as follows:

S R Qn+1

0 0 No change from previous state

0 1 The Flip-flop is in the reset state

1 0 The Flip-flop is in the set state

1 1 Illegal input condition

The symbol shown in fig.(9-2) is frequently used to represent the S-R Flip-flop.

Fig.(9-2) S-R Flip-flop Symbol

Another type of flip-flop which combines both, static and dynamic data transfer is

the D-type flip-flop which may be realized from the S-R as shown in Fig.(8-3)

Fig.(9-3) D-Type Flip-flop

Exp. No. 9: SEQUENTIAL LOGIC CIRCUITS Logic Laboratory

11

In the D-type flip-flop if clock is “0” both AND gates will be disabled and the flip-

flop outputs remain unchanged whatever the state of D is. However if clock is “1”, the

Q output will take the value of D. If D is “0” S will be “0” and R will be 1, hence Q

will be “0” and Q` “1”. If D is “1” S will be “1” and R will be “0”, hence Q will be

“1” and Q` “0”.

Normally the clock input is connected to a clock signal which is in the “0” state

but can be changed to the “1” for short period of time when required, such short period

is sufficient to cause the change. The state of D input could be considered as a data,

which can be stored at the Q output after the application of a clock pulse. After the

clock signal reset to “0” the state of the D line can be changed without affecting the

previously stored state at Q. The truth table of the D-flip flop can be written as

follows:

D Qn Qn+1

0 0 0

0 1 0

1 0 1

1 1 1

Where Qn is the value of Q before the application of a clock pulse, and Qn+1 is the

value of Qn afrer the application of a clock pulse.

Another type of Flip-flop is the T-type Flip-flop shown in Fig.(8-4). Application of

a clock pulse on this type of flip-flop will make it toggle (if the flip-flop is reset, it will

be set after application of clock pulse and vice versa) this type of flip-flop is used in

counter circuits.

Fig.(9-4) T-Type Flip-flop

Another type of flip-flop is the J-K Flip-flop shown in Fig.(9-5).

Fig.(9-5) J-K Flip-flop

In this type of flip-flop, the effect of clock pulse depends on logic states of J-K

inputs (also known as steering inputs) as follows:

Exp. No. 9: SEQUENTIAL LOGIC CIRCUITS Logic Laboratory

13

The advantage of the J-K flip-flop is that it avoids the undetermined output

condition which occurs with the S-R Flip-flop, when both of its inputs are “1” at the

same time.

J K Qn+1

0 0 No change

0 1 The Flip-flop is in the Reset

1 0 The Flip-flop is in the Set

1 1 The Flip-flop Toggles

We can write the truth table for the type of J-K Flip-flop:

J-K Flip-flop can be used in register circuits to store binary numbers. The symbol

of this type is shown in Fig.(9-6).

Fig.(9-6)

Procedure:

1. Using the circuit shown Fig.(9-1a), verify the truth table of the S-R flip-flop.

2. Using the unit shown in Fig.(9-2), then compare S-R Flip-flop using NOR gates

only with S-R Flip-flop in Fig(9-1a).

3. Connect D-type from S-R Flip-flop.

4. Connect T-type from S-R Flip-flop.

5. Connect J-K Flip-flop from S-R Flip-flop.

J K Qn Qn+1

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Exp. No. 9: SEQUENTIAL LOGIC CIRCUITS Logic Laboratory

13

Discussion:

1. Realize the S-R Flip-flop shown in Fig.(9-6) using NAND gates only, and verify

its operation.

2. Draw timing waveforms for all types of Flip-flops.

3. Realize all D-type, T-type using J-K Flip-flops.

Exp. No. 10: COUNTERS Logic Laboratory

63

COUNTERS

Object: To study the operation and design of counters.

Theory:

A counter is a sequential circuit that counts the number of input pulses it receives.

Basically, a counter is a memory device that stores the number of input pulses. Counters are

used in timing circuits, signal generators, and many other digital circuits. Binary counters

can be placed into two categories relating to the method by which they ate clocked. Counting

circuits may be clocked synchronously or asynchronously. An asynchronous counter is a

one in which the Flip-flops are not simultaneously triggered. Each Flip-flop, after the least

significant stage, is clocked by the output of the preceding one; they also called “ripple

counters”. Synchronous counters are those which all Flip-flops are simultaneously triggered

from the same clock input. Asynchronous counters “up” and “down” and synchronous

counters usually recycle on a number of clock pulses equal to some power of “2”; e.g. with

three stages reset occurs on 8 counts, and with four stages reset occur on 16, etc.That means

 2
N

= Number of pulses (counts);

Where N= Number of stages (Flip-flops).

(I) Asynchronous Counters:

Fig.(10-1) Asynchronous 3-bit “UP” counter

Exp. No. 10: COUNTERS Logic Laboratory

63

Procedure:

1- Connect the circuit shown in Fig.(11-1) to observe counter to count from (0-7). Hint:

Reset the counter by flipping S1 line momentarily up, then down.

2- With clock selector in “manual presses the manual clock button once. Observe that the

number 001 appears as “100” since FF1 contains the least significant bit.

3- To continue press the manual clock button and observe that the count progress until

“111” and resets on the 8
th
 pulse, then connect the clock pulse to continuous slow

speed and notice the output.

4- Verify the truth table for this counter and draw the counter waveforms.

5- Change the input of FF2 from Q to Q` and of FF3 from Q to Q`. Then verify the truth

table for this type of counter.

Discussion:

1- How many Flip-flops are needed in an up-asynchronous counter, which can count up

to 64?

2- If two binary up and down counter start counting at the same time and from the same

initial numbers, what is the relation between the two numbers in each counter?

(II) Asynchronous Decade Counters:

The decade counter is designed so that it will count from “0” (0000) to “9” (1001)

and then reset on the next count. One type of such a counter, called a BCD counter, is

shown in Fig.(10-2).

Fig.(10-2) Logic diagram of a BCD asynchronous counter

Exp. No. 10: COUNTERS Logic Laboratory

63

Procedure:

1- Connect the circuit shown in Fig.(10-2).

2- Connect the clock pulse to continuous slow speed and observe the O/P.

Discussion:

1- Design an asynchronous counter to count from 0 to 11 (MOD 12).

2- Design a MOD-6 asynchronous counter.

(III) Synchronous And Modulus Counters:

Procedure:

1- Reset the counter shown in Fig. (10-3).

2- Set the clock selector to slow and verify that the counter operates correctly.

Fig.(10-3) Three Stage Synchronous “UP” counter

3- Now, you notice that the circuit you just verify Fig. (10-3) is a 3-bit up counter. To

modify this circuit to be a 3-bit down counter, try to modify the connection of the

circuit shown in Fig. (10-4):

Fig.(10-4) Three Stage Synchronous “DOWN” counter

Exp. No. 10: COUNTERS Logic Laboratory

63

4- Connect the circuit in Fig. (10-5) and verify its operation as a synchronous counter.

Fig.(10-5) “MOD 3” Synchronous counter

Discussion:

1- Design a 3-bit UP-DOWN synchronous counter such that the UP or DOWN counter is

selected by a switch. Connect and verify operation.

2- Design a divide-by-6 counter and illustrate its operation.

3- Design a synchronous counter to count this following sequence:

{ 2 – 3 – 5 – 7 }

Exp. No. 11: SHIFT REGISTERS Logic Laboratory

04

SHIFT REGISTERS

Object: To verify the types and functions of shift registers.

Theory:

Registers are memory devices used for storing and manipulating data, and they are

essential components of most digital systems. Registers may be classified according to how

their stored information is entered or removed one bit at a time, and a parallel register

accepts or transfers all bits of data simultaneously. We may also have serial-parallel or

parallel-serial registers, in which the data is entered one way and removed the other.

 (I) Memory Registers:

A memory register, or storage register, is a device capable of accepting information in

the form of a binary number, holding that information after the input that provided it has

been removed, and making the information available as an output. Memory registers may be

constructed with Flip-flops. Fig.(11-1) shows how to represent a memory register for 8-bit

storing the number 10010100.

1 0 0 1 0 1 0 0

Fig.(11-1) Symbol for an 8-bit memory register

(II) Shift Registers:

Another important type of register is the shift registers, which can store data as a

memory register does but is more often used to process, or move data. Usually the data

movement is made by shifting data serially from one stage of the register to adjacent stage.

The shift may be from left to right (a right-shift register), from right to left (a left-shift

register), or in both directions (a bi-directional shift register).

Also, the data can be rotate left or right. Finally the data can be shifted in the serially

in and parallel out, or a parallel in and serial out, or parallel in and parallel out. This is shown

in Fig.(11-2).

Exp. No. 11: SHIFT REGISTERS Logic Laboratory

04

Fig.(11-2) Types of shift registers

Procedure:

1- Connect the circuit shown in Fig.(11-1) to observe counter to count from (0-7). Hint:

Reset the counter by flipping S1 line momentarily up, then down.

2- With clock selector in “manual presses the manual clock button once. Observe that the

number 001 appears as “100” since FF1 contains the least significant bit.

3- To continue press the manual clock button and observe that the count progress until

“111” and resets on the 8
th
 pulse, then connect the clock pulse to continuous slow

speed and notice the output.

4- Verify the truth table for this counter and draw the counter waveforms.

5- Change the input of FF2 from Q to Q` and of FF3 from Q to Q`. Then verify the truth

table for this type of counter.

Exp. No. 11: SHIFT REGISTERS Logic Laboratory

04

Discussion:

1. Generally, what is the difference between a counter and a shift register?

2. What two principle functions are performed by a shift register?

3. How many clock pulses are required to enter a byte of data serially into an 8-bit shift

register?

4. What are the differences between SISO and PIPO shift registers.

