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LOGIC GATES 
 

Object: To perform the functions of gates 

Theory: 

A logic gates is an electronic device that perform a Boolean operations on one or more 

inputs to produce an output. There are 4 types of names have been used for the same types of 

circuits: digital circuit, switching circuit, Logic circuit. AND gates. Binary logic deals with 

variables that take on tow discrete values and with operations that assume logical meaning. 

The two values the variables take may be called by different names (e.g. true and false, yes 

and no, 1 or 0). 

Logic Gates: 

1. AND gate: the AND gate is a cct., which gives a high output (logic 1) if 

all inputs are high. A dot (.) is used to indicate the AND operation. In 

practice, however, the dot is usually omitted. 

 

2. OR gate: the OR gate is a cct., which gives a high output if one or more of 

its inputs are high. A plus sign (+) is used to indicate the OR operation. 

 

3. NOT gate: the NOT gate is cct., which produces at its output the negated 

(inverted) version of its input logic the cct. Is known as an inverter. If the 

input is 𝐴, the inverted output is written as 𝐴 . 

 

4. NAND gate: the NAND gate is a NOT- AND cct., which is equivalent to 

an AND cct. Followed by a NOT cct. The output of the NAND gate is 

high if any of its inputs is low. 

 

5. NOR gate: the NOR gate is a NOT- OR cct., which equivalent to AND 

cct. Followed by a NOT cct. The output of the NOR gate is low if any of 

its inputs is high. 

 

6. EX-OR gate: the exclusive –or gate is a cct., which gives a high output if 

its tow inputs are different. A circuited plus sign ⊕ is used to indicate the 

(EX-OR) operation. 

 

7. EX-NOR gate: the exclusive–NOR gate is a cct., which gives a high 

output if its tow inputs are similar. 
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The seven gates that are the fundamental logic elements in digital system are illustrated in 

Fig. (1.1) 

Logic Function 
Logic Gate 

Symbol 
Truth Table 

Boolean 

Expression 

 

 

NOT 

 

 

 

 

 

 

A Y
 

 

 

 

 

Input (A) 
Output 

(Y) 

0 1 

1 0 

Y=𝐴 

OR 

 

 

 

NOR 

 

 

Y1

A
B Y2

A
B

 
 

 

 

Input Output 

A B Y1 Y2 

0 0 0 1 

0 1 1 0 

1 0 1 0 

1 1 1 0 

Y1= A+B  
 

 

 

Y2= A+B  

AND 

 

 

NAND 

 

Y1

A
B Y2

A
B

 

 

Input Output 

A B Y1 Y2 

0 0 0 1 

0 1 0 1 

1 0 0 1 

1 1 1 0 

Y1= A.B  
 

 

 

Y2= A.B  

EX-OR 

 

 

EX-NOR 

 

Y1

A
B Y2

A
B

 

 

Input Output 

A B Y1 Y2 

0 0 0 1 

0 1 1 0 

1 0 1 0 

1 1 0 1 

Y1= A B  
 

                  

Y1= A B  

 

Fig.(1.1)  The fundamental of basic logic gates 

  

The function of the gates described so far can be summarized by means of 

the idealized waveform diagrams shown below: 
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A

B

A

A+B

A+B

A.B

A.B

A B

A B
 

 

Fig.(1.2) Idealized waveforms diagram for two-inputs gates positive logic 

        Through there is a large variety of gates, it is often desirable to convert logic 

expression into a form suitable for whatever type of gates are available, its 

desirable to use one type of gates rather than mix different gates. So it is easy to 

design logic cct. using NAND or NOR gates only. NAND gates can be used to 

produce any logic function .For this reason, they are referred to as universal gates.   

    The NAND gate can be used to generate the (NOT, AND, OR, NOR) functions. An 

inverter can be made from NAND gate by connecting all inputs together and creating, in 

effect, a single common input as shown in Fig.(1.3-a) for two input gate. An AND function 

can be generate using NAND gates, as shown in Fig. (1.3-b) also an OR function can be 

produce with NAND gates as illustrated in Fig. (1.3-c).Finally, NOR function is produced, as 

shown in Fig. (1.3-d).  
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A A

(a)
            

A

B
A B=A B

(b)  

A B=A+B

A

B

(c)

A+B

A

B

(d)

 

Fig(1.3) Universal application of NAND gates 

 

Procedure: 

      By means of using NAND gates, find the truth table of all possible gates shown 

in Fig. (1.1). 

 

Discussion: 

1. Implement the following functions using: 

a. Mixing gates. 

b. NAND gates only. 

 F1=ABC+CD 

 F2= 𝐴𝐵 +BCD+EFGH 

2. Implement the following functions using: 

a. Mixing gates. 

b. NOR gates only. 

 F1=A+ 𝐵 

 F2=(A+B)(A+C) 
3. Using only NOR gates to produce the logic functions of  : 

a. NOT gate  

b. OR gate 

c. AND  gate 

d. NAND gate  

4. Determine the output waveform for the cct. Shown in Fig. (1.4) with the inputs as 

shown. 
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A

B

C

 
 

Fig(1.4) Testing a logic circuit using three-inputs 
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COMBINATIONAL LOGIC CIRCUITS 

 

Object:  

           To study the axioms defining Boolean algebra and how to represent Boolean 

expressions in SOP and POS forms. 

Theory: 

Digital systems are composed of combinations logic gates described by a truth table 

and Boolean expression or a logic symbol diagram. 

The fundamental Boolean operations of AND, OR and NOT can be summarized as 

follows: 

 

        

  (   )  (   )    

  (   )          

      

      

      

      

          

          (   ) 

        

  (   )  (   )    

      (   )  (   ) 

      

      

      

      

  (   )    

(   )  (   )        

 

In combination logic, the output of the circuit depends only on the inputs to the circuit. 

Combination logic problems are normally given in the form of logical statements or a truth 

table. To design and implement the problem, Boolean logical expressions equations are 

derived for the output logic function in terms of the binary variables representing the inputs. 

The logic expressions are given either in the form of a sum of products (SOP) of in the form 

of a product of sums (POS). 
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CANONICAL FORMS: 

 For the table shown below: 

Input 

X  Y  Z 

Output 

F 

 0   0   0 

0 0   1 

 0   1   0 

 0   1   1 

 1   0   0 

 1   0   1 

1 1   0 

1   1   1 

1 

0 

1 

1 

0 

0 

1 

1 

 

 

We can derive the logical expression for the function F: 

                                

This expression is called the canonical sum of product. A product term which contains 

each of the n-variables factors in either complemented or uncomplemented form called 

minterm. So F can be put in other form such as: 

                             ∑          

Since F=1 in rows 0, 2,3,6,7 

A logical equation can also be expressed as a product of sums. This done by 

considering the combinations for which F=0.  From the truth table F=0 in rows 1, 4, 5 hence: 

                                     

                                       

                   (     )   (     )  (     ) 
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The product of sums can be expressed as: 

                             ∏      

A sum which contains each of n variables complement not is called a maxterm. 

 

Procedure: 

1. Using Boolean algebra to simplify the following expressions. Then find the truth 

table of each after connecting the circuits. 

a.          (   )    ( ̅   ) 

b.    (   ̅     )  ( ̅   ̅) 

c.    (   ) (   ) 

d.    (  ) (  ) 

        2. Obtain   &   in the form of  

            a. SOP 

            b. POS 

A  B  C       

 0   0   0 

0 0   1 

 0   1   0 

 0   1   1 

 1   0   0 

 1   0   1 

1 1   0 

1   1   1 

1 

1 

1 

1 

0 

1 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

 

Then simplify   &   and connect them circuits to verify the operation of both, using NAND 

gates only. 
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Discussion: 

1. Simplify the following logical expression and implement them using suitable logic 

gates. 

a.    ∑            

b.    ∏      

2. Determine whether or not the following equalities correct: 

a.        ̅      C 

b.  ̅(  )     ̅   (  )   ̅ ̅̅ ̅̅  

3. Convert the following expressions to SOP forms: 

a. (   ̅   )    

b. (   )( ̅     ̅       ) 

4. Write a Boolean expression for the following statement : 

F is a "1" if A, B&C are all 1's or if only two of the variable is a"0". 

    5. Find F for the following Figure. 

B
C
D

A

C

A

A

F

C

D
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CODE CONVERSION 

 

Object: To consider various important codes and the logic for converting from one to 

another.  

 

Theory: 

       As we know, decimal, octal, and hexadecimal numbers can be represented by binary 

digits. Not only numbers, but letters and other symbols, can be represented by 1's and 0's.    

In fact, any entity expressible as numbers, letters, or other symbols can be represented by 

binary digits, and therefore can be processed by digital logic circuits. 

      Combination of binary digits that represent numbers, letters, or symbols are digital codes. 

In many applications special codes are used for such auxiliary functions as error detection. 
 

BCD code:  

      To code the ten decimal digits, ten unique symbols consisting of the binary digits 0&1are 

needed. A code of this type, which represents the decimal digits with binary digits, is called a 

binary- coded decimal, or BCD. There are several such codes in use. The BCD code of a 

decimal number of more than one digit is obtained by replacing each digit by it's4 -bit BCD 

code. In general, any binary code used to represent the decimal digit is called BCD. Table 

below shows the most general binary codes. 

 

Procedure: 

1-Design a logic circuit to convert BCD code to EX-3code using NAND gates only.  

2-Use K-map to design a logic circuit to convert from 5421 code to 8421 code using NAND 

gates to check the logic design. 

3-Design a logic circuit to obtain a Gray code from a BCD code using proper logic gates. 
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Decimal 

Weighted codes Unweighted code 

8 4 2 1      2 4 2 1      5 2 1 1      7 4 2 1 Ex-3             Gray 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0000         0000         0000         0000 

0001         0001         0001         0001 

0010         0010         0100         0010 

0011         0011         0110         0011 

0100         0100         0111         0100 

0101         1011         1000         0101 

0110         1100         1001         0110 

0111         1101         1011         1000 

1000         1110         1110         1001 

1001         1111         1111         1010 

 

0011              0000 

0100              0001 

0101              0011 

0110              0010 

0111              0110 

1000              0111 

1001              0101 

1010              0100 

1011              1100 

1100              1101 

 

Table (3.1) Binary codes 

 

Discussion: 

1. Convert each Gray code to binary: 

a.1010 b.00010 c.11000010001 

2. Convert each EX-3 code number to decimal: 

 a.0011 b.1001 c.10000101 

3. Design a logic circuit with an output (F) and four bit input A, B, C&D.              The output 

(F=1) when the input is BCD number and (F=0) otherwise. 

4. Design a logic circuit which converts a BCD code to 6311 code using    NAND gates only. 
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BASIC ARITHMETIC OPERATIONS 

 

Object: To design and implement logic circuit for basic arithmetic operations. 

 

Theory: 

  An important part of the central processor of any computer is the arithmetic unit in 

which binary addition, subtraction, division and multiplication are carried out. 

Subtraction however can be performed by adding complemented numbers. 

Multiplication can also be performed by repeated addition .Division can be also 

achieved by repeated subtraction. This means that the adder is the centre piece of 

the arithmetic unit. There are two types of the addition: 

1. Half - Adder (H.A) : 

    It is a device that adds two bits of binary data. In other words, the half adder 

performs the operation s: 

  0 + 0= 0 

  0 + 1= 1                                            ……………. (4.1) 

  1 + 0= 1 

  1 + 1= 0              , Carry = 1 

 The last operation is, of course, 1+1=0, which is 0 with a carry 1 to the next bit 

position. Equation (4.1) may be expressed n the form of a truth table as shown in 

table (4.1) 

                    Input Output 

A B S C 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

1 

0 

0 

0 

0 

1 
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      From the truth table we see that 

                ̅   ̅                                         …….. (4.2) 

                  B 

and                                                            …….. (4.3) 

        So the H.A adds only two bits at a time, so that it cannot be used to add two 

bits and a carry bit from a previous step, as is generally required in adding tow 

binary numbers the symbol for the H.A is given in Fig (5.1.b). 

 

A

B
S

C

H.A

A BS=

C=AB

A

B

 

                             (a)                                                          (b) 

Fig. (4.1)   (a) Half Adder circuit diagram     

                                                           (b) Half Adder block diagram     

 

2. Full- Adder  (F.A): 

              A half adder is not very useful on its own, and a third input is often 

required for carries. Adding numbers that have two bits or more requires a full 

adder (F.A) which is capable of the previous order. The symbol of full-adder is 

shown in Fig. (4.2).  

 

                                          Fig. (4.2) Full –adder block diagram  
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Where: 

           Ci:  carry- in from the previous addition. 

  Co: carry- out to the next addition. 

  The truth table for a full-adder is (F.A) is determined by the 8 possible combinations 

of the inputs A, B and Ci,  the corresponding values of S and Co is given in table (4.2) 

from which we may write  

                                                     ………   (4.4.a) 

               (       )       ̅       ̅                       ………    (4.4.b) 

                      ̅                               ………    (4.5.a) 

                                                                                 ………    (4.5.b) 

 

Input 

A B    

Output 

           S                          Co 

 0  0  0 0                         0 

           0  0  1 1                         0 

 0  1  0 1                         0 

 0  1  1 0                         1 

 1  0  0 1                         0 

 1  0  1 0                         1 

           1  1  0 0                         1 

1  1  1 1                         1 
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Procedure: 

A. Half-Adder (H.A) 

1. Implement a H.A logic equation for sum and carry using NAND 

gates only then verify the truth table. 

2. Design a Half-Subtractor (H.S) network, and verify its truth table. 
 

B. Full-Adder (F.A): 

1. Verify the truth table of F.A by means of using NAND gates only. 

2. Design a Full-Subtractor (F.S) network, and verify its truth table. 
 

Discussion: 

1. By means of H.A block diagram build a F.A. 

2. By means of H.S block diagram build a F.S. 

3. Build a H.A using NOR gates only. 

4. Use only two 2-inlput EX-OR gates and three 2-input NAND gates 

to build F.A. 

5. Use the block diagrams of F.A to show the addition process of the 

binary numbers110&111. 

6. By means of F.A block diagram, EX-OR gates and external switch x, 

design a 4-bit adder/subtractor. 

7. What is meant by Parallel binary adders? For the parallel adder 

shown in Fig (4.3), determine the sum by analysis of the logical 

operation of the circuit. 

1               1 1               0 1               0 1               1 

0 

Fig. (4.3) 
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COMPARATORS 
 

 

Object: To study the operation of magnitude comparator. 

 

Theory: 

A magnitude comparator is a combinational circuit that compares two numbers A and 

B and determines their relative magnitudes. The outcome of comparison is specified by three 

binary variables that indicate whether A<B, A=B, or A> B. the EX-OR gate is a basic 

comparator because it's output is 1 if it's two input bits are not equal and is 0 if the inputs are 

equal. Fig (5-1) shows the EX-OR as a 2-bit comparator.  

 

 

 

 

Fig.(5-1) Basic comparator operation. 

The circuit for comparing two n-bit numbers has 2
2n

 entries in the truth table, and 

becomes too cumbersome even with n=3. Table (5-1) shows how to compare two numbers 

having 1-bit. 

INPUTS OUTPUTS 

A B Z1 

A=B 

Z2 

A<B 

Z3 

B>A 

0 0 1 0 0 

0 1 0 0 1 

1 0 0 1 0 

1 1 1 0 0 
 

Table (5-1) 

    From table (5-1), using minterms, we see that: 

BABAZ ..1   

BAZ .2                                                       ……….  (5-1) 

BAZ .3                                

 

0 

0 
0 

0 

1 
1 

Indicates the input bits 

 are equal 

Indicates the input bits 

 are not equal 

1 

1 
0 

1 

0 
1 

Indicates the input bits 

 are equal 

Indicates the input bits 

 are not equal 
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From these expressions we may obtain the digital circuit by using AND, OR, and 

NOT gates. The result is shown in Fig (5-2). 

 

 

 

 

 

Fig.(5-2) one digit comparator. 

The general algorithm for designing a n-bit comparator has the following steps (i.e. 4-

bit) 

a) Write the coefficients of the number as follows: 

A=A3 A2 A1 A0 

    B=B3 B2 B1 B0 

    Where each subscribed letter represent one of the digits in the number. 

b) For A=B (A3=B3, A2=B2, A1=B1, A0=B0), this can logically be expressed with an 

equivalence function: 

      iiiii BABAx ..                                 i=0, 1, 2, 3,….., n        ……. (5-2) 

     Where xi=1 only if the pair of bits in position i are equal. 

In order to determine whether A<B or A>B, compare the relative magnitudes of pair 

of significant digits starting from the MSB position. If the two digits are equal, we compare 

the next lower significant pair of digits. This comparison continues until a pair of unequal 

digits is reached. If the corresponding digit of A is 1 and of B is 0, we conclude that A<B. if 

the corresponding digit of A is 0 and that of B is 1, we have A>B. 

The sequential comparison can be expressed logically by; 

(A<B)= 00123112322333 BAXXXBAXXBAXBA   

(A>B)= 00123112322333 BAXXXBAXXBAXBA                        ……. (5-3) 

From these expressions, we may obtain the digital comparator circuit as shown in Fig. (5-3).  

 

 

A 
B  (A=B) 

 (A>B) 

 (A<B) 
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Fig.(5-3) Digital comparator circuit for 2-digit 

 

Procedure: 

1. Design a digital comparator which compares two binary numbers each with 2-bit, using 

truth table method. 

2. The waveforms shown in Fig. (5-4), are applied to the comparator, find the output 

waveforms? 

 

 

 

 

 

Fig. (5-4) 

 

Discussion: 

1. Given the logic symbol for the 7485 4-bit comparator. Use it to compare the magnitudes 

of two binary numbers of: 

a) 8-bit 

b) 12-bit  

 

 

 

 

(10)     

(12) 

(13) 

(15) 
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(3) 

(4) 

(9) 
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P<Q 

P=Q 

P 

Q 
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(6) 

(7) 

> 

< 
= 

 

Comp. 

 

 

 

 

P0 

P1 

Q0 

Q1 

P>Q 

P<Q 

P=Q 

P0 

P1 

Q0 

Q1 

1A  

0A  

G (A<B) 

• X1 

0B  

E (A=B) 

L (A>B) 

X0 

A1 

1B  

A0 

A1 

B1 

A0 

B0 

B1 

B0 
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2. For each of the following set of binary numbers, determine the logic states at each point in 

the logic symbol of 7485 4-bit comparator. 

a) P3 P2 P1 P0=1100 

Q3 Q2 Q1 Q0=1010 

b)  P3 P2 P1 P0=1001 

Q3 Q2 Q1 Q0=1101 

 

3. Design a logic circuit to check the equality of two binary numbers of 4 bits, using NAND 

gates only. 
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PARITY GENERATORS / CHECKERS 
            

Object: To study how to detect the error in the data. 

 

Theory: 

Errors can occur as digital codes are being transferred from one point to another 

within a digital system or while codes are being transmitted from one system to another. The 

errors take the form of undesired changes in the bits that make up the coded information; that 

is, a "1" can change to a "0", or a "0" to "1", due to component malfunction or electrical 

noise. Many systems, however, employ a parity bit as a means of detecting a bit error. 

Binary information is normally handled by a digital system in groups of bits called words. A 

word always contains either an even or an odd number of 1's. An even parity bit makes the 

total even. 

As an illustration of how parity bits are attached to a code word, table (6-1) lists the 

parity bits for each BCD code number for both even and odd parity. The parity bit for each 

BCD number is in the p column. 

 

 

Table (6-1) 

The parity bit can be attached to the code group at either the beginning or the end depending 

on system design.  

Notice that the total number of 1's, including the parity bit, is always even for even parity 

and always odd for odd parity. 

 

 

 

Even Parity Odd Parity 

Pe 8 4 2 1   Po 8 4 2 1  

0 0 0 0 0  1 0 0 0 0  

1 0 0 0 1 0 0 0 0 1 

1 0 0 1 0 0 0 0 1 0 

0 0 0 1 1 1 0 0 1 1 

1 0 1 0 0 0 0 1 0 0 

0 0 1 0 1 1 0 1 0 1 

0 0 1 1 0 1 0 1 1 0 

1 0 1 1 1 0 0 1 1 1 

1 1 0 0 0  0 1 0 0 0  

0 1 0 0 1 1 1 0 0 1 
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Parity Logic: 

In order to check for or generate the proper parity in a given code word, a very basic 

principle can be used. The sum of an even number of 1's is always zero, and the sum of an 

odd number of 1's is always one. Therefore, in order to determine if a given code word is 

even, or odd parity, all of the bits in that code word are summed. The sum of two bits can be 

generated by an EX-OR gates, as shown in Fig.(6-1-a); the sum of three bits can be formed 

by two EX-OR gates connected  as shown in Fig.(6-1-b); and so on.    

 

   

 

Fig.(6-1) 

A typical 5-bit generator / checker circuit is shown in Fig. (6-2). 

It can be used for either odd or even parity. When used as an odd parity checkers as 

shown, the operation as follows: 

A 5-bit code (four data bits and one parity bit) is applied to the inputs. The four data 

bits are on the EX-OR inputs, and the parity bit is applied to the ODD input line. When the 

number of 1's in the 5-bit code is odd, the ODD output is LOW, indicating proper parity. 

When there is an even number of 1's, the ODD output is HIGH, indicating incorrect parity 

which is illustrated in Fig.(6-2). 

 

 

 

 

(a) Code Correct 

 

 

 

 

(b) Code Error 

 

0 

1 

0 

0 

0 0 Data 

bits 

Parity 

bit 

ODD output 

ODD 

1 

1 

0 

0 

0 1 Data 

bits 

Parity 

bit 

ODD output 

ODD 

 

A 

B 

C 
F 

(b) Summing of three bits (a) Summing of two bits 

A 

B 
F 
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Similarly, even parity checks are illustrated for both non error and error conditions in 

Fig.(6-3). 

 

 

 

 

(a) Code Correct 

 

 

 

 

 

(b) Code Error 

 

Fig.(6-3) 

 

Procedure: 

1. Design an even/odd parity generator for 4-bit data. 

2. Design a parity checker circuit for a 4-bit data. 

3. Design a logic circuit for a 3-bit message to be transmitted with an even parity bit.  

4. Four data bits are to be transmitted. Design a parity bit generator to give an o/p of '1' if the 

number of logic 1's in the message is: (i) odd; (ii) even.  

 

Discussion: 

1. Attach the proper even parity bit to the following codes: 

    a) 11010      b) 1001      c) 0111101 

2. Repeat problem 1 for odd parity.  

3. Check each of the even parity codes for an error. 

4. The waveforms shown in Fig. (6-4) are applied to 4-bit parity logic. Determine the output 

waveform in proper relation to the inputs. How many times does even parity occur? 

Parity 

bit 

Data 

bits 

1 

0 

0 0 EVEN output 

EVEN 

1 

0 

Parity 

bit 

Data 

bits 

 0 

0 

0 1 EVEN output 

EVEN 

1 

0 
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 Fig.(6-4)  
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B 
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D 

A 

B 

C 

D 
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  DECODERS & ENCODERS 

            

Object: To study the function of decoder and encoder circuits 
 

Theory: 

(A) Decoder: 

A decoder is a combinational circuit that converts coded information, such as binary, 

into a recognizable form, such as decimal. Fig. (7-1) shows a 2-to-4 line decoder circuit. The 

two inputs are decoded into four outputs, each output representing one of the minterms of the 

2-input variables. The two inverters provide the complement of the input, each one of the 

minterms. However, a 2-to-4 line decoder can be used for decoding any 2-bit code to provide 

four outputs, one of each element at the code. 

 

   

 

 

 

 

Fig.(7-1) A logic circuit of 2-to-4 line decoder   

 

The operation of the decoder may be further classified from it's input-output 

relationships, listed in table(7-1) observe that one output variable are mutually exclusive 

because only one output can be equal to 1 at one time. 

 

  INPUTS OUTPUTS 

A B D0 D1 D2 D3 

0 0 1 0 0 0 

0 1 0 1 0 0 

1 0 0 0 1 0 

1 1 0 0 0 1 
 

Table (7-1) Truth table of a 2-to-4 line decoder 
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(B) Encoder: 

The encoder is also a combinational logic circuit; it converts information, such as a 

decimal number or an alphabetic character, into some coded form such as binary or BCD. 

The octal-to-binary encoder consists of eight inputs, one for each of the eight digits, 

and three outputs that generate the corresponding binary number. It is constructed with OR 

gates whose inputs can be determined from the truth table given in table(7-2). The lower-

order output bit Z is 1 if the input octal digit is odd. Output X is 1 for octal digits 4, 5, 6 or 7. 

Note that D0 is not connected to any OR gate, the binary inputs are all 0's. 

The encoder in Fig.(7-2) assumes that only one input line can be equal to 1 at any 

time; otherwise the circuit has no meaning. 

 

 

 

 

 

Fig. (7-2) Logic diagram of Octal-to-binary encoder 

Note that the circuit has eight inputs and could have 2
8
=256 possible input combinations. 

Only eight of these combinations have any meaning. The other inputs combinations are don't 

care conditions. The operation of the encoder listed in table (7-2).  

INPUTS OUTPUTS 

D0 D1 D2 D3 D4 D5 D6 D7 X Y Z 

1 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 1 

0 0 1 0 0 0 0 0 0 1 0 

0 0 0 1 0 0 0 0 0 1 1 

0 0 0 0 1 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 1 0 1 

0 0 0 0 0 0 1 0 1 1 0 

0 0 0 0 0 0 0 1 1 1 1 
 

Table (7-2) Truth table of an Octal-to-binary encoder 
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Procedure: 

(A) Decoder: 
 

1. Connect the circuit as shown in Fig.(7-1) using NAND gates only. Check it's truth 

table. 

2. Design a BCD-to-Decimal decoder using NAND gates only. 

 

(B) Encoder: 
 

1. Connect the circuit as shown in Fig.(7-2) using NAND gates only. Check its truth 

table. 

 

Discussion: 

1. Design a 3-bit binary decoder (3-to-8 decoder), then construct this circuit using NOR gates 

only. 

2. Design a BCD-to-seven segment decoder (7447 IC). 
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MULTIPLEXERS & DEMULTIPLEXERS 
      p 

 

Object: To study the function of multiplexer and demultiplexer circuits. 
 

Theory: 

(A) Multiplexer (Data selector): 

A multiplexer (MUX) is a device that allows digital information from several sources 

to be routed onto a single line for transmission over that line to a common destination. The 

basic multiplexer, then, has several data input lines and a single output line. It also has 

data selector inputs that permit digital data on any one of the input to be switched to the 

output line. 

A simple multiplexer can be represented by a switch operation that sequentially 

connects each of the input lines with the output, as illustrated in Fig.(8-1). 
 

     

 

 
 

Fig. (8-1) Simple Multiplexer operation 

 

Assume that we have logic levels an indicated on the three inputs. 

During time interval T1, input A is connected to the output; during interval T2, input B is 

connected to the output; and during interval T3, input C is connected to the output.  

The logic symbol for a 4-input multiplexer is shown in Fig.(8-2). Notice that there are 

two selection lines because with two selection bits, each of the four data-input lines can be 

selected. 

 

 

   

 

 

 

 

 

 
Fig. (8-2) Logic symbol for 4-to-1 data selector 
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If a binary 0 (S1=0 and S0=0) is applied to the data-select lines, the data on input D0 appear 

on the data-output line. If a binary 1 (S1=0 and S0=1) is applied to the data-select lines, the 

data on the input D1 is appear on the data output. If a binary 2 (S1=1 and S0=0) is applied, the 

data on D2 appear on the output. If a binary 3 (S1=1 and S0=1) is applied, the data on D3 are 

switched to the output line. A summary of this operation is given in table (8-1).  

 DATA-SELECT INPUTS INPUT 

SELECTED S1 S0 

0 0 D0 

0 1 D1 

1 0 D2 

1 1 D3 
 

Table (8-1) Data selection for a 4-input Multiplexer 

The data output Y is equal to the data input D0 if and only if S1=0 and S0=0; 

010 .SSDY   

The data output Y is equal to D1 if and only if S1=0 and S0=1; 

011 .SSDY   

The data output is equal to D2 if and only if S1=1 and S0=0; 

012 .SSDY   

The data output is equal to D3 if and only if S1=1 and S0=1; 

013 .SSDY   

These terms are (OR)ed, the total expression for the data output is: 

Y= 010 .SSD + 011 .SSD + 012 .SSD + 013 .SSD  

The implementation of this equation is shown in Fig. (8-2). 

 

 

 

 

 

 

Fig. (8-2) Logic diagram for a 4-input Multiplexer 
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(B) Demultiplexer: 

A demultiplexer (DMUX) basically reverses the multiplexing function. It takes data 

from one line and distributes them to a given number of output lines. Fig. (8-3) shows a one-

line to four-line demultiplexer block diagram. 

 

   

 

 

 

 

Fig. (8-3) Logic symbol 1-line to 4-line demultiplexer 

Fig. (8-4) shows a 1-line-to-4-line demultiplexer circuit. The two select lines enable only one 

gate at a time, and the data appearing on the input line will pass through the selected gate to 

the associated output line. 

 

 

    

 

 

 

Fig. (8-4) A 1-to-4-line demultiplexer 

 

Procedure: 
 

(A) Multiplexer: 
 

1. Connect a circuit of 2-to-1 multiplexer and observe its table. 

2. Connect the circuit of Fig. (8-2) and observe its table. 

 

(B) Demultiplexer: 
 

1. Connect the circuit of Fig. (8-4) and observe its table. 
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Discussion: 

1. The data input and data select waveforms in Fig. (8-5) are applied to the multiplexer in 

Fig. (8-2). Determine the output waveform in relation to the input. 

 

 

 

 

 

 

Fig. (8-5) 

2. The serial data input waveform and data selectors are shown in Fig. (8-6). Determine the 

data-output waveform for the demultiplexer shown in Fig. (8-4). 

 

 

 

 

    

   

Fig. (8-6) 

 

3. Design 8-to-1 MUX and verify its truth table. 

4. Design 1-to-8 DEMUX and verify its truth table. 
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SEQUENTIOL LOGIC CIRCUITS 
             

Object: To investigate the properties of logic circuit configurations possess memory. 

 

Theory: 

The logic elements studied in last experiments all required a continuous input level to 

operate. Once the input level was removed, the gate or network does not retain its output 

condition. Logic gates in other works do not have the property of memory. A machine 

often needs additional devices, which have a memory to retain their output states after 

the inputs are removed. These devices called, flip-flops, may be combined with non 

memory logic gates to form networks capable of controlling industrial machinery, 

solving mathematical problems, and storing information. The combination of many such 

memory devices with logic gates forms what is known as a sequential logic circuit. 

Fig.(9-1a) shows the basic construction of as S-R (set-reset) Flip-flop. Qn indicates 

the Q output before the clock pulse is applied and Qn+1 indicate the Q output after the 

clock pulse is applied. 

 

 

 

 

 

Fig.(9-1a) S-R Flip-flop construction 

 

 

 

 

 

 

 

Fig.(9-1b) S-R Flip-flop from two NOR gates truth table 

 

S R Qn Qn+1 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 0 
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In S-R Flip-flop truth table Fig.(9-1b), Qn refers to the state of Q before the 

application of the inputs, while Qn+1 refer to the state of Q after the application of the 

S-R inputs (state of Q` us the complement of that Q) 

Hence, the output depends not only on the input (S and R) but also on the previous 

state of output (Qn), the don’t care entries in the last two rows reflect the fact that in 

normal operation both inputs should not be permitted to be “1” at the same time. These 

are two reasons for this restriction, first if both inputs are “1”. Both outputs will be 

driven to “0” which violates the basic definition of flip-flop operation which requires 

that the output should always be the complement of each other. 

Second  S and R are “1” at the same time in the input both NOR gate and both 

outputs will try, to go to “0”, because of the feedback it is impossible to be “1” at the 

same time with the result that the flip-flop will switch unpredictably and may even go 

into oscillation. The truth table can be written as follows: 

S R Qn+1 

0 0 No change from previous state 

0 1 The Flip-flop is in the reset state 

1 0 The Flip-flop is in the set state 

1 1 Illegal input condition 

 

The symbol shown in fig.(9-2) is frequently used to represent the S-R Flip-flop. 

 

Fig.(9-2) S-R Flip-flop Symbol 

Another type of flip-flop which combines both, static and dynamic data transfer is 

the D-type flip-flop which may be realized from the S-R as shown in Fig.(8-3) 

 

Fig.(9-3) D-Type Flip-flop 
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In the D-type flip-flop if clock is “0” both AND gates will be disabled and the flip-

flop outputs remain unchanged whatever the state of D is. However if clock is “1”, the 

Q output will take the value of D. If D is “0” S will be “0” and R will be 1, hence Q 

will be “0” and Q` “1”. If D is “1” S will be “1” and R will be “0”, hence Q will be 

“1” and Q` “0”. 

Normally the clock input is connected to a clock signal which is in the “0” state 

but can be changed to the “1” for short period of time when required, such short period 

is sufficient to cause the change. The state of D input could be considered as a data, 

which can be stored at the Q output after the application of a clock pulse. After the 

clock signal reset to “0” the state of the D line can be changed without affecting the 

previously stored state at Q. The truth table of the D-flip flop can be written as 

follows: 

D Qn Qn+1 

0 0 0 

0 1 0 

1 0 1 

1 1 1 

Where Qn is the value of Q before the application of a clock pulse, and Qn+1 is the 

value of Qn afrer the application of a clock pulse. 

Another type of Flip-flop is the T-type Flip-flop shown in Fig.(8-4). Application of 

a clock pulse on this type of flip-flop will make it toggle (if the flip-flop is reset, it will 

be set after application of clock pulse and vice versa) this type of flip-flop is used in 

counter circuits. 

 

Fig.(9-4) T-Type Flip-flop 

Another type of flip-flop is the J-K Flip-flop shown in Fig.(9-5). 

 

Fig.(9-5) J-K Flip-flop 

In this type of flip-flop, the effect of clock pulse depends on logic states of J-K 

inputs (also known as steering inputs) as follows: 
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The advantage of the J-K flip-flop is that it avoids the undetermined output 

condition which occurs with the S-R Flip-flop, when both of its inputs are “1” at the 

same time. 

J K Qn+1 

0 0 No change  

0 1 The Flip-flop is in the Reset  

1 0 The Flip-flop is in the Set  

1 1 The Flip-flop Toggles 

 

We can write the truth table for the type of J-K Flip-flop: 

 

 

 

 

 

 

 

J-K Flip-flop can be used in register circuits to store binary numbers. The symbol 

of this type is shown in Fig.(9-6). 

 

Fig.(9-6) 

Procedure: 

1. Using the circuit shown Fig.(9-1a), verify the truth table of the S-R flip-flop. 

2. Using the unit shown in Fig.(9-2), then compare S-R Flip-flop using NOR gates 

only with S-R Flip-flop in Fig(9-1a). 

3. Connect D-type from S-R Flip-flop. 

4. Connect T-type from S-R Flip-flop. 

5. Connect J-K Flip-flop from S-R Flip-flop. 

J K Qn Qn+1 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 0 
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Discussion: 

1. Realize the S-R Flip-flop shown in Fig.(9-6) using NAND gates only, and verify 

its operation. 

2. Draw timing waveforms for all types of Flip-flops. 

3. Realize all D-type, T-type using J-K Flip-flops. 
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COUNTERS 

 

Object: To study the operation and design of counters. 
 

Theory: 

A counter is a sequential circuit that counts the number of input pulses it receives. 

Basically, a counter is a memory device that stores the number of input pulses. Counters are 

used in timing circuits, signal generators, and many other digital circuits. Binary counters 

can be placed into two categories relating to the method by which they ate clocked. Counting 

circuits may be clocked synchronously or asynchronously. An asynchronous counter is a 

one in which the Flip-flops are not simultaneously triggered. Each Flip-flop, after the least 

significant stage, is clocked by the output of the preceding one; they also called “ripple 

counters”. Synchronous counters are those which all Flip-flops are simultaneously triggered 

from the same clock input. Asynchronous counters “up” and “down” and synchronous 

counters usually recycle on a number of clock pulses equal to some power of “2”; e.g. with 

three stages reset occurs on 8 counts, and with four stages reset occur on 16, etc.That means 

   2
N 

= Number of pulses (counts);  

Where  N= Number of stages (Flip-flops).  

 

(I)  Asynchronous Counters: 

 

Fig.(10-1) Asynchronous 3-bit “UP” counter 
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Procedure: 

1- Connect the circuit shown in Fig.(11-1) to observe counter to count from (0-7). Hint: 

Reset the counter by flipping S1 line momentarily up, then down. 

2- With clock selector in “manual presses the manual clock button once. Observe that the 

number 001 appears as “100” since FF1 contains the least significant bit. 

3- To continue press the manual clock button and observe that the count progress until 

“111” and resets on the 8
th
 pulse, then connect the clock pulse to continuous slow 

speed and notice the output. 

4- Verify the truth table for this counter and draw the counter waveforms. 

5- Change the input of FF2 from Q to Q` and of FF3 from Q to Q`. Then verify the truth 

table for this type of counter. 

 

Discussion: 

1- How many Flip-flops are needed in an up-asynchronous counter, which can count up 

to 64? 

2- If two binary up and down counter start counting at the same time and from the same 

initial numbers, what is the relation between the two numbers in each counter? 

 

(II)  Asynchronous Decade Counters: 

The decade counter is designed so that it will count from “0” (0000) to “9” (1001) 

and then reset on the next count. One type of such a counter, called a BCD counter, is 

shown in Fig.(10-2). 

 

Fig.(10-2) Logic diagram of a BCD asynchronous counter 
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Procedure: 

1- Connect the circuit shown in Fig.(10-2). 

2- Connect the clock pulse to continuous slow speed and observe the O/P. 

 

Discussion: 

1- Design an asynchronous counter to count from 0 to 11 (MOD 12). 

2- Design a MOD-6 asynchronous counter. 

 

(III) Synchronous And Modulus Counters: 

Procedure: 

1- Reset the counter shown in Fig. (10-3). 

2- Set the clock selector to slow and verify that the counter operates correctly. 

 

Fig.(10-3) Three Stage Synchronous “UP” counter 

3- Now, you notice that the circuit you just verify Fig. (10-3) is a 3-bit up counter. To 

modify this circuit to be a 3-bit down counter, try to modify the connection of the 

circuit shown in Fig. (10-4): 

 

Fig.(10-4) Three Stage Synchronous “DOWN” counter 
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4- Connect the circuit in Fig. (10-5) and verify its operation as a synchronous counter. 

 

Fig.(10-5) “MOD 3” Synchronous counter 

 

Discussion: 

1- Design a 3-bit UP-DOWN synchronous counter such that the UP or DOWN counter is 

selected by a switch. Connect and verify operation. 

2- Design a divide-by-6 counter and illustrate its operation. 

3- Design a synchronous counter to count this following sequence: 

{ 2 – 3 – 5 – 7 } 
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SHIFT REGISTERS 

             

Object: To verify the types and functions of shift registers. 

 

Theory: 

Registers are memory devices used for storing and manipulating data, and they are 

essential components of most digital systems. Registers may be classified according to how 

their stored information is entered or removed one bit at a time, and a parallel register 

accepts or transfers all bits of data simultaneously. We may also have serial-parallel or 

parallel-serial registers, in which the data is entered one way and removed the other. 

 

 (I) Memory Registers: 

A memory register, or storage register, is a device capable of accepting information in 

the form of a binary number, holding that information after the input that provided it has 

been removed, and making the information available as an output. Memory registers may be 

constructed with Flip-flops. Fig.(11-1) shows how to represent a memory register for 8-bit 

storing the number 10010100. 

 

1 0 0 1 0 1 0 0 
 

Fig.(11-1) Symbol for an 8-bit memory register 

 

(II) Shift Registers: 

Another important type of register is the shift registers, which can store data as a 

memory register does but is more often used to process, or move data. Usually the data 

movement is made by shifting data serially from one stage of the register to adjacent stage. 

The shift may be from left to right (a right-shift register), from right to left (a left-shift 

register), or in both directions (a bi-directional shift register). 

Also, the data can be rotate left or right. Finally the data can be shifted in the serially 

in and parallel out, or a parallel in and serial out, or parallel in and parallel out. This is shown 

in Fig.(11-2).   
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Fig.(11-2) Types of shift registers 

 

Procedure: 

1- Connect the circuit shown in Fig.(11-1) to observe counter to count from (0-7). Hint: 

Reset the counter by flipping S1 line momentarily up, then down. 

2- With clock selector in “manual presses the manual clock button once. Observe that the 

number 001 appears as “100” since FF1 contains the least significant bit. 

3- To continue press the manual clock button and observe that the count progress until 

“111” and resets on the 8
th
 pulse, then connect the clock pulse to continuous slow 

speed and notice the output. 

4- Verify the truth table for this counter and draw the counter waveforms. 

5- Change the input of FF2 from Q to Q` and of FF3 from Q to Q`. Then verify the truth 

table for this type of counter. 
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Discussion: 

1. Generally, what is the difference between a counter and a shift register?  

2. What two principle functions are performed by a shift register? 

3. How many clock pulses are required to enter a byte of data serially into an 8-bit shift 

register? 

4. What are the differences between SISO and PIPO shift registers. 

 


