
Lecture Two – C++ Data Types C++ Programming Language

1

Lecture Two – C++ Data Types

Introduction
A program can use several data to solve a given problem, for example, characters, integers, or

floating-point numbers. Since a computer uses different methods for processing and saving data, the

data type must be known. The type defines:

1. The internal representation of the data.

2. The amount of memory to allocate.

Built Data Types in C++

Built-in types (also called fundamental types) are specified by the C++ language standard and are built

into the compiler. Built-in types aren't defined in any header file. The following table shows the built-

in data type and the maximum and minimum value which can be stored in the designated variables.

These are:-

1. Integer Data Type

2. Floating-point Data Type

3. Characters Data Type

4. Strings Data Type

5. Boolean Data Type

6. void Data Type

Lecture Two – C++ Data Types C++ Programming Language

2

1. Integer Data

Integer data types represent whole numbers without a fractional or decimal part. They can be signed

(positive, negative, or zero) or unsigned (only positive or zero). The int type is the default basic integer

type. It can represent all of the whole numbers over an implementation-specific range.

 A signed integer representation is one that can hold both positive and negative values. It's used

by default, or when the signed modifier keyword is present.

 The unsigned modifier keyword specifies an unsigned representation that can only hold non-

negative values.

A size modifier specifies the width in bits of the integer representation used. The language supports:

1. short, A short type must be at least 16 bits wide.

2. long, A long type must be at least 32 bits wide.

3. long long, A long long type must be at least 64 bits wide.

The int keyword may be omitted when signed, unsigned, or size modifiers are specified. The modifiers

and int type, if present, may appear in any order. For example, short unsigned and unsigned int short

refer to the same type.

Example: int signedInt = -42;

 unsigned int unsignedInt = 123;

Integer Literals
When integer values are stored and represented as literal, then such literals are known as integer

literals. There are two types of integer literal:

1. Prefixes

2. Suffixes

3. Prefixes: The bases of the integer values are represented through the prefix of the integer

literals. For example, 0x80 = 128, here 0x represents Hexa decimal base and the value in

decimal is 128. There are four types of prefixes used to represent integer literals:

i. Decimal-literal: Decimal-literals have base 10, which does not contain any prefix for

representation. It contains only decimal digits (0,1,2,3,4,5,6,7,8,9). For example, 10, 22, 34

etc.

ii. Octal-literal: The base of the octal-literals is 8 and uses 0 as prefix for representation. It

contains only octal digits (0, 1, 2, 3, 4, 5, 6, 7). For example, 010,022,034 etc.

iii. Hex-literal: The base of the Hex-literals is 16 and uses 0x or 0X as the prefix for

representation. It contains only hexadecimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a or A, b or B, c

or C, d or D, e or E, f or F). For example, 0x80, 0x16, 0x4A etc.

iv. Binary-literal: The base of the Binary-literals is 2 and uses 0b or 0B as the prefix for

representation. It contains only binary digits (0, 1). For example, 0b11, 0b110, 0B111 etc.

Example:

#include <iostream>

using namespace std;

int main(){

 const int DECIMAL = 128; //defining decimal-literal

 const int OCTAL = 0200;//defining octal-literal

Lecture Two – C++ Data Types C++ Programming Language

3

 const int HEX = 0x80;//defining hex-literal

 const int BINARY = 0b10000000;//defining binary-literal

cout<<"Decimal Literal: "<<DECIMAL<<"\n literals ";

//display of result through

 cout<<"Octal Literal: "<<OCTAL<<"\n";

 cout<<"Hex Literal: "<<HEX<<"\n";

 cout<<"Binary Literal: "<<BINARY<<"\n";}

Output:

Decimal Literal: 128

Octal Literal: 128

Hex Literal: 128

Binary Literal: 128

2. Suffixes: The type of integer values are represented through the suffixes of the integer

literals. For example, 3826382382688LL, 2836263826823909ULL etc. In the above

example, LL represents long long int for the value 3826382382688 and ULL represents

unsigned long long int for the value 2836263826823909. Following are the types of suffixes

used to represent integer literals:

i. int: It is the default integer type and hence its representation does not need any suffix. The

value of integer literals ranges from -2147483648 to 2147483647.

i. unsigned int: It is the integer type that does not contain negative int values. The value of

unsigned integer literals ranges from 0 to 4294967295. A compiler error will be triggered

if any negative value gets assigned to unsigned integer literals. The literal contains u or U

as the suffix for its representation.

ii. long int: The value of long integer literals ranges from -2,147,483,648 to 2,147,483,647.

The literal contains l or L as the suffix for its representation.

iii. unsigned long int: The value of unsigned long integer literals ranges from 0 to

4,294,967,295. The literal contains ul or UL as the suffix for its representation.

iv. long long int: The value of long long integer literals ranges from -(2^63) to (2^63)-1.

The literal contains ll or LL as the suffix for its representation.

v. unsigned long long int: The value of unsigned long long integer literals ranges from 0 to

18,446,744,073,709,551,615. The literal contains ull or ULL as the suffix for its

representation.

Examples:

long b = 4523232;

long int c = 2345342;

long double d = 233434.56343;

short d = 3434233; // Error! out of range

unsigned int a = -5; // Error! can only store positive numbers or 0

Example:

#include <iostream>

using namespace std;

int main(){

 //defining integer-literal

 const int INTEGER = 128;

 //defining unsigned integer-literal

Lecture Two – C++ Data Types C++ Programming Language

4

 const unsigned int UNSIGNED = 3147483647U;

 //defining long integer-literal

 const long int LONG = 2147483646L;

 //defining unsigned long integer-literal

 const unsigned int UNSIGNED_LONG = 4294967294UL;

 //defining long long integer-literal

 const long long int LONG_LONG = 5294967294LL;

 //defining unsigned long long integer-literal

const unsigned long long int UNSIGNED_LONG_LONG = 18446744073709551610ULL;

 //display of result through literals

 cout<<"Integer Literal: "<<INTEGER<<"\n";

 cout<<"Unsigned Integer Literal: "<<UNSIGNED<<"\n";

 cout<<"Long Integer Literal: "<<LONG<<"\n";

 cout<<"Unsigned Long Integer Literal: "<<UNSIGNED_LONG<<"\n";

 cout<<"Long Long Int Literal: "<<LONG_LONG<<"\n";

 cout<<"Unsigned Long Long Int Literal: "<<UNSIGNED_LONG_LONG<<"\n";}

Output:

Integer Literal: 128

Unsigned Integer Literal: 3147483647

Long Integer Literal: 2147483646

Unsigned Long Integer Literal: 4294967294

Long Long Int Literal: 5294967294

Unsigned Long Long Int Literal: 18446744073709551610

3. Floating-Point Data

The floating-point data types contain the real numbers. The real numbers hold an integer part, a real

part and a fractional part and an exponential part in it.

The following table lists the floating-point types in C++ and the comparative restrictions on floating-

point type sizes.

Numbers with a fraction part are indicated by a decimal point in C++ and are referred to as floating-

point numbers. In contrast to integers, floating-point numbers must be stored to a preset accuracy. The

following three types are available for calculations involving floating-point numbers:

1. float for simple accuracy

2. double for double accuracy

3. long double for high accuracy

Lecture Two – C++ Data Types C++ Programming Language

5

The value range and accuracy of a type are derived from the amount of memory allocated and the

internal representation of the type.

1. In the decimal form, it is necessary to add a decimal point, exponent part or both, or else it will

give an error.

 For example: -2.0, 0.0000234

 float myFloat = 3.14159;

 double myDouble = 3.141592653589793;

float area = 64.74;

double volume = 134.64534;

2. In the exponential form, it is necessary to add the integer part, fractional part or both, or else, it

will give an error.

For example: -0.22E-5

Note: E-5 = 10-5

Example:-
// To display hexadecimal integer literals and

// decimal integer literals.

//

#include <iostream>

using namespace std;

int main()

{

// cout outputs integers as decimal integers:

cout << "Value of 0xFF = " << 0xFF << " decimal"

<< endl; // Output: 255 decimal

// The manipulator hex changes output to hexadecimal

// format (dec changes to decimal format):

cout << "Value of 27 = " << hex << 27 <<" hexadecimal"

<< endl; // Output: 1b hexadecimal

return 0;}

4. Character Data Types

The C++ language uses the char data type to represent characters. When a single character enclosed by

a single quote is stored and represented as a literal, then the literal is known as a character literal. char

type: All the characters belonging to the ASCII table can be represented and stored through this type of

literal.

Example: char myChar = 'X';

 const char VARA = 'A'; // constant char literal

char test = 'h';

As you might have guessed, signed char can store both positive and negative integers, while unsigned

char can only store positive integers (including 0).

// plain char

char plain_1 = 65;

char plain_2 = 0;

Lecture Two – C++ Data Types C++ Programming Language

6

// plain char with negative value might cause problems with some compilers

char plain_3 = -56;

// signed char

signed char sin_1 = 12;

signed char sin_2 = 0;

signed char sin_3 = -12;

// unsigned char

unsigned char unsin_1 = 85;

unsigned char unsin_2 = 0;

The C++ language does not specify any particular characters set, although in general a character set

that contains the ASCII code (American Standard Code for Information Interchange) is used. This 7-bit

code contains definitions for 32 control characters (codes 0 – 31) and 96 printable characters (codes 32

– 127). The char (character) type is used to store character codes in one byte (8 bits). This amount of

storage is sufficient for extended character sets,.

5. String Data Types

When more than one character is stored in double-quotes and represented as literals. Such a literal is

known as a string literal. It can store the entire special as well as escape sequence characters.

Internal representation of a string literal

Example:

#include <iostream>

using namespace std;

int main () {

 char ch[12] = {'H', 'e', 'l', 'l', 'o', ' ', 'w','o','r','l','d'};

 string st = "Welcome to C++";

 string std_st = "Happy Learning";

 cout << ch << endl;

 cout << st << endl;

 cout << std_st << endl; return 0;}

Output:

Hello world

Welcome to C++

Happy Learning

Lecture Two – C++ Data Types C++ Programming Language

7

6. Boolean Data Types

Boolean is a data type in C++ that represents true or false values. It is commonly used in programming

to control program flow, make decisions, and evaluate conditions. In C++, a Boolean is a data type

that can have two possible values: true or false. Booleans are commonly used in conditional

statements, loops, and other control structures to determine whether a particular condition is true or

false. To declare a Boolean variable in C++, we use the bool keyword. Here's an example:

bool myBoolean = true;

In this example, myBoolean is a Boolean variable that has been assigned the value true. We can also

declare Boolean variables without assigning them a value, like this:

bool myBoolean;

In this case, the initial value of myBoolean will be false.

Example:

bool a = true;

bool b = false;

bool c = true;

bool result1 = a && b; // result1 is false

bool result2 = a || b; // result2 is true

bool result3 = !a; // result3 is false

bool result4 = !b; // result4 is true

bool result5 = (a || b) && c; // result5 is true

7. void type

The void type describes an empty set of values. No variable of type void can be specified. The void

type is used primarily to declare functions that return no values or to declare generic pointers to

untyped or arbitrarily typed data. The void keyword indicates an absence of data.

Example: void main()

Sizes of built-in types
The amount of memory needed to store an object of a certain type can be

ascertained using the sizeof operator: sizeof(name)yields the size of an

object in bytes, and the parameter name indicates the object type or the

object itself. For example, sizeof(int) represents a value of 2 or 4

depending on the machine. Most built-in types have implementation-defined sizes. The

following table lists the amount of storage required for built-in types in Microsoft C++. In particular,

long is 4 bytes even on 64-bit operating systems.

Lecture Two – C++ Data Types C++ Programming Language

8

Exercises

Exercise 1
The sizeof operator can be used to determine the number of bytes occupied in memory by a variable

of a certain type. For example, sizeof(short) is equivalent to 2. Write a C++ program that displays the

memory space required by each fundamental type on screen.

Solution 1
#include <iostream>

using namespace std;

int main()

{

cout << "\nSize of Fundamental Types\n"

<< " Type Number of Bytes\n"

<< "----------------------------------" << endl;

cout << " char: " << sizeof(char) << endl;

cout << " short: " << sizeof(short)<< endl;

cout << " int: " << sizeof(int) << endl;

cout << " long: " << sizeof(long) << endl;

cout << " float: " << sizeof(float)<< endl;

cout << " double: " << sizeof(double)<<endl;

cout << " long double: " << sizeof(long double)

<< endl; return 0;}

Exercise 2
Write a C++ program to generate the screen output shown below:-

Lecture Two – C++ Data Types C++ Programming Language

9

Solution 2
// Usage of escape sequences

#include <iostream>

using namespace std;

int main(){

cout << "\n\n\t I" // Instead of tabs

"\n\n\t\t \"RUSH\"" // you can send the

"\n\n\t\t\t \\TO\\" // suited number

"\n\n\t\t AND" // of blanks to

"\n\n\t /FRO/" << endl; // the output.

return 0; }

Exercise 3
Which of the variable definitions shown below is invalid or does not make sense?

 Defining and initializing variables:

int a(2.5); const long large;

int b = '?'; char c('\'');

char z(500); unsigned char ch = '\201';

int big = 40000; unsigned size(40000);

double he's(1.2E+5); float val = 12345.12345;

Solution 3
Incorrect:

int a(2.5); // 2.5 is not an integer value

const long large; // Without initialization

char z(500); // The value 500 is too large

// to fit in a byte

int big = 40000; // Attention! On 16-bit systems

// int values are <= 32767

double he's(1.2E+5); // The character ' is not

// allowed in names

float val = 12345.12345; // The accuracy of float

// is only 6 digits

Exercise 4
Write a C++ program that two defines variables for floating-point numbers and initializes them with

the values 123.456 and 76.543. Then display the sum and the difference of these two numbers on

screen.

Solution 4
// Defining and initializing variables

#include <iostream>

Lecture Two – C++ Data Types C++ Programming Language

10

using namespace std;

int main()

{ float x = 123.456F, // or double

y = 76.543F,sum;

sum = x + y;

cout << "Total: "

<< x << " + " << y << " = " << sum << endl;

cout << "Difference: "

<< x << " — " << y << " = " << (x — y) << endl;

return 0; }

