

The Hydrology

It is the science that deals with global water, its appearance, circulation & distribution, its chemical & physical characteristics, and its relation with the environment & living beings, and it's a branch of geology science so it deals with streams rivers....., and it related with other sciences like chemistry physical and fluid.

1- Some branches of hydrology

1-1-Limnology (the science that studies the lakes)

1-2-Cryology (the science that studies the snow and ice)

1-3-Geohydrology (the science that deals with groundwater)

1-4-Potamology (the science that studies the overground or the rivers that run on the ground, or the surface water)

1-5-Hydrometeorology (the science that deals with hydrology &climate to gather)

1-6-Chemical hydrology is the study of the chemical characteristics of water

2-Some purposes for studying hydrology

<u>2-1-</u>Design the water resources plants such as irrigation, water supply, water energy, wastewater plants, and bridges.

<u>2-2-</u>Estimating the capacity of water reservoirs and dams.

<u>2-3-</u>Quantity and capacity of floods to control them.

2-4-Minimum and maximum flow from the resource.

2-5-Determination of probable maximum precipitation for channel and spillways, and also to design water and rainwater pipes. Analyzing the impacts of antecedent moisture on sanitary sewer systems.

2-6-Determining the water balance of a region.

3-Units you need

1 Doname	2500 m ²
1 Hectare(ha.)	$10^4 m^2$
1 Acre	0.4047 ha.
1 Acre	4047
	$\sim 4000 \text{ m}^2$
1 A ara	12560 ft ²
I Acie	45500 II
Acre-ft	43560 ft^3
1ft	0.3048 m
1 ft	12 inches
1 m	3.28 ft
1 ft^3	23*10 ⁻⁶ acre-
	ft
1 acre-ft	1234 m ³

Note: Units of rainfall (P), and runoff(R) may be by m or m^3 or m^3/s or acre-ft. The area from which the calculations are named Watershed, catchment area, and basin area.(

4-Water budget (balance equation)

The water recirculation in nature yields the water budget equation and takes this formula:

 $I - O = \Delta S$

Where:

I : inflow , O: outflow, Δ S: change in storage

Each income to the watershed takes the plus sign and each outcome takes the minus sign

```
P :precipitation or rainfall (+) , R:direct runoff (+) ,
F:infiltration (-)
```

E:evaporation (-), Qin (+), Qout(-) and so on

So the equation may take another shape

P+R+Qin-E-F-Q out= Δs

If there is no change in storage then $\Delta s=0$

5-Definitions

- المياه الجارية فوق سطح الأرض the flow of water over surface : the flow of water over surface
- <u>5-2.Interflow:</u> the lateral flow of water on the surface of the soil.

المياه الجارية تحت سطح الأرض والقريبة منها

<u>5-3.Direct flow:</u> the summation of overland flow and interflow.

مجموع المياه الجارية فوق سطح الأرض وتحتها مباشرة

<u>5-4.Runoff</u> : water leaving the land surface to the stream.

مياه السيح او التي تجري على الأرض باتجاه أي منفذ مائي

<u>5-5.Base flow</u> : inter flow +ground flow.

مجموع المياه التي تجري تحت سطح الأرض العميقة والقريبة

<u>5-6.Total flow</u> :direct runoff+ + base flow. $next{approx}$

Examples

Ex1

Over a period, a catchment area is expected to have precipitation, evaporation, and groundwater, Write the budget equation.

P-E-F= ΔS

Ex.2

During two months, a catchment area (65 km²) is expected to have 254 mm of precipitation, calculate the P amount by m^3 ?

(254/1000) ×65×10⁶=16510*10³ m³

Ex.3

During a month, a catchment area (50 km²) is expected to have 85 mm of evaporation, calculate the E amount by m^3/s ?

 $(85/1000) \times 50 \times 10^{6*} 30^{*} 24^{*} 3600 = 11016^{*} 10^{9} \text{ m}^3/\text{s}$

Ex.4

Estimate the constant rate of (withdrawal (during a month) from a 2 ha. Reservoir in 30 days during which the reservoir level dropped by 0.75 m despite an average inflow into the reservoir of 2.5 m³/day. During the month the average seepage loss from the reservoir was 0.25 cm? (by m³)

In- F- with.= ΔS

In= $2.5 \times 30 = 75 \text{ m}^3$

Out (F) = $0.25/100 \times 2 \times 10^4 = 50 \text{ m}^3$

 $S=0.75\times2\times10^4=15000 \text{ m}^3$

Withdrawal - 1475 m³

Ex.5

Average runoff into a 670 km² catchment area was measured as 65 m³/s for a 2-hr period, what is the runoff volume (R) by mm?

 $R=(65 *1000 *2*3600) / 670 * 10^{6} = 0.698 mm$

Ex. 6

What is the infiltration rate from a lake with an area of 1000 ha., if the annual infiltration = 40 inches? (acre-ft)

40/12 = 3.34 ft.

1000 ha. / 0.4047 = 2470.9 acre

2470.9* 3.34 = 8253.02 acre. Ft.

