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Chapter One 

Complex Numbers 1.1: 

      One of the advantages of dealing with the real numbers instead of the rational 

numbers is that certain equations which do not have any solutions in the rational 

numbers have a solution in real numbers. For instance,  𝑥2 = 2  is such an 

equation. However, we also know some equations having no solution in real 

numbers, for instance  𝑥2 = −1  , or  𝑥2 = −2  . We define a new kind of number 

where such equations have solutions. The new kind of numbers will be called 

complex  numbers. 

Definition 1.2: 

A complex number is an expression of ordered pairs (x, y) of real numbers. The set 

of all complex numbers are denoted by ℂ or C. That is;  

ℂ = {𝑧 =  𝑥, 𝑦 ∈ 𝑅 × 𝑅}. 

 1-Two complex numbers are equal only when there are actually the same. That is; 

(𝑥, 𝑦) = (𝑢, 𝑣) precisely when  𝑥 = 𝑢 and  𝑦 = 𝑣.  

2- We define the sum (subtract) and product of two complex numbers: 

Sum : (𝑥, 𝑦)  + (𝑢, 𝑣)  =  (𝑥 +  𝑢, 𝑦 +  𝑣).  

Subtract: (𝑥, 𝑦) – (𝑢, 𝑣)  =  (𝑥  –   𝑢, 𝑦  –   𝑣). 

Product : (𝑥, 𝑦). (𝑢, 𝑣)  =  (𝑥𝑢 –  𝑦𝑣, 𝑥𝑣 +  𝑦𝑢). 

 

Now let’s consider the arithmetic of the complex numbers with second coordinate 

0: 

(𝑥, 0)  + (𝑢, 0)  =  (𝑥 +  𝑢, 0), and (𝑥, 0). (𝑢, 0)  =  (𝑥𝑢, 0). 
 We simply use 𝑥 as an abbreviation for (𝑥, 0) and there is no danger of confusion: 

𝑥 +  𝑢 is short-hand for (𝑥, 0)  + (𝑢, 0)  =  (𝑥 +  𝑢, 0) and  𝑥𝑢 is short-hand for 

 (𝑥, 0). (𝑢, 0).   

Next, notice that  

𝑥. (𝑢, 𝑣)  =  (𝑢, 𝑣). 𝑥 =  (𝑥, 0). (𝑢, 𝑣)  =  (𝑥𝑢, 𝑥𝑣). Now then, any complex 

number z = (x, y) may be written 

𝑧 =  (𝑥, 𝑦)  =  (𝑥, 0)  + (0, 𝑦) =  𝑥 +  𝑦(0, 1). 
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i- When we let  𝑖 =  (0, 1), then we have  

𝑖2  =  (0, 1). (0, 1)  =  (−1, 0), and we have agreed that we can safely abbreviate 

(−1, 0) as  −1. Thus, 𝑖2 =  −1 and 𝑖 =  −1 . 

ii-  𝑧 = (𝑥, 𝑦)  = 𝑥 +  𝑦(0, 1) = 𝑥 + 𝑖𝑦. 
 

The real number x is called the real part denoted by R(z) and real number y is 

called the imaginary part of z, and denoted by Im(z). 

Now, suppose  𝑧 =  (𝑥, 𝑦)  =  𝑥 +  𝑖𝑦 and 𝑤 =  (𝑢, 𝑣)  =  𝑢 +  𝑖𝑣. Then we have 

𝑧𝑤 =  (𝑥 +  𝑖𝑦). (𝑢 +  𝑖𝑣) 
         =  𝑥𝑢 −  𝑦𝑣  +  𝑖 (𝑥𝑣 +  𝑦𝑢). 

3- Let  𝑧 =  𝑥 +  𝑖𝑦. Define the conjugate of  the complex number by 𝑧  by  

𝑧 = 𝑥 + 𝑖𝑦        = 𝑥 − 𝑖𝑦. 

                                           

4- Division: Let 𝑧 = 𝑎 + 𝑖𝑏, 𝑤 = 𝑐 + 𝑖𝑑   and  𝑐2  +  𝑑 2 ≠  0 . Then  

. 
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5- The modulus(absolute value) of a complex number  𝑧 =  𝑥 +  𝑖𝑦 is defined to 

be the nonnegative real number           𝑟 =  𝑧 =  𝑥2 + 𝑦2. 

If we think of  𝑧  as a point in the plane (𝑥, 𝑦), then 𝑟 =  𝑧  is the length of the 

line segment from the origin to 𝑧. 

                             

6- Distance: the distance between two complex numbers 𝑧1 = (𝑥1, 𝑦1), 𝑧2 =

(𝑥2, 𝑦2) is defined as follows: 

𝑑  𝑧1, 𝑧2 =  (𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 = |𝑧1 − 𝑧2|. 

Example 1.3: 

1- Let 𝛼 = 2 + 3𝑖 and 𝛽 = 1 − 𝑖. 
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2- Write 𝑧 =
1+3𝑖

2−5𝑖
 in the form 𝑎 + 𝑖𝑏. 

Solution:  

 

3- Write 𝑧 =
3−5𝑖

2+9𝑖
 in the form 𝑎 + 𝑖𝑏. 

Solution:  

 
 

4- Write  (2 + 3𝑖). (1 −  𝑖) in the form 𝑎 + 𝑖𝑏 

Solution: 
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Polar Coordinates1.4: 

Let 𝑧 = (𝑥, 𝑦) =  𝑥 +  𝑖𝑦 be a complex number. We know that any point in  

the plane can be represented by polar coordinates (𝑟, 𝜃). 

 Let  

𝑟 = |𝑧| =   𝑥2  +  𝑦2 

If (r, 𝜃) are the polar coordinates of the point (x, y) in the plane, then  

x = r cos 𝜃  and y = r sin 𝜃. 

Hence, z = r(cos 𝜃 + i sin 𝜃)=𝑐𝑖𝑠𝜃 = 𝑟𝑒𝑖𝜃 .   

                                                                      
 

     The number 𝜃 is called an argument (angle) of  𝑧 and  we write  

𝜃 = arg= arctan(
𝑦

𝑥
) . 

Thus a complex numbers has an infinite number of arguments, any two of which 

differ by an integral multiple of  2𝜋; that is, 

𝑒𝑖(𝜃+2𝜋) = 𝑒𝑖𝜃 . 

The principal argument of z is the unique argument that lies on the interval 

[0,2𝜋) (in some books  (−𝜋, 𝜋] ).  
 



Finite Mathematics II                          Complex Numbers                College of Science\ Dept. of Math. 

                                                                                                                                                

                                                             Chapter One 
 

7 
 

                
Algebraic Properties of Complex Numbers 1.5: 

1-  Commutative law for addition:  

z1 + z2 = z2 + z1. 

2-  Commutative law for multiplication: 

z1z2 = z2z1. 

3- Associative law for addition: 

z1 + (z2 + z3) = (z1 + z2) + z3 

4- Associative law for multiplication: 

z1(z2z3) = (z1z2)z3 
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5-Multiplication is distributive with respect to addition:  

z1(z2 + z3) = z1z2 + z1z3 

6- The product of two complex numbers is zero if and only if at least one of 

the factors is zero. That is; if  

𝑧1𝑧2 = 0 then either 𝑧1 = 0 or 𝑧2 = 0. 

7- Additive Inverses:  

Any complex number 𝑧 has a unique negative –z such that 𝑧 + (– 𝑧)  =  0. 

 If 𝑧 =  𝑥 +  𝑦𝑖, the negative   – 𝑧 = –  𝑥 –  𝑦𝑖. 

8- Multiplicative Inverses:  

Any nonzero complex number 𝑧 =  𝑥 +  𝑦𝑖 has a unique inverse 
1

𝑧
= 𝑧−1such that  

𝑧𝑧−1 = 1. Thus,  
1

𝑧
=

1

𝑥+𝑖𝑦
=

𝑥

𝑥2+𝑦2
+ 𝑖

−𝑦

𝑥2+𝑦2
  . 

9- Additive Identity.  

There is a complex number w such that 𝑧 +  𝑤 =  𝑧 for all complex numbers 𝑧. 

The number 𝑤 is the ordered pair (0, 0). 

10- Multiplicative Identity.  

There is a complex number 𝑤 such that  𝑧 w =  𝑧  for all complex numbers 𝑧. The 

ordered pair (1, 0)  =  1 +  0𝑖  is the unique complex number with this property. 

11- |z1z2|= |z1 | |z2 |. 

12- |z|= 𝑧𝑧  =|𝑧 |.  

13- 𝑧1 ∓ 𝑧2
         = 𝑧1 ∓ 𝑧2 . 

14- 𝑧1. 𝑧1       = 𝑧1 . 𝑧2   and ( 
𝑧1

𝑧2
 )      =

𝑧1   

𝑧2   .
, 𝑧2 ≠ 0. 

15- 𝑧  = 𝑧. 
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16-Triangle Inequality:  
 

i-  |z1 + z2| | z1| + |z2| . (Without prove).  

ii-  |z1 + z2| |z1| - |z2| .  

iii-  |z1 - z2| |z1| - |z2| . 

iv-  |z1 + z2 + z3| |z1| + |z2| + |z3|. 

17-  If  z1= r1[(cos(𝜃1) + i(sin(𝜃1)]=𝑒𝑖𝜃1  and   

            z2= r2[(cos(𝜃2) + i(sin(𝜃2)]=𝑒𝑖𝜃2   then  

 z1z2 = r1r2[(cos(𝜃1 + 𝜃2) + i(sin(𝜃1 + 𝜃2)]=r1r2𝑒
𝑖(𝜃1+𝜃2) and 

z1/z2 = r1/ r2 [(cos(𝜃1 − 𝜃2) + i(sin(𝜃1 − 𝜃2)]= r1/ r2 𝑒
𝑖(𝜃1−𝜃2) ; 𝑟2 ≠ 0. 

 

18- De Moivre’s Formula. Let 𝑧 = 𝑟𝑒𝑖𝜃 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃). Then  

𝑧𝑛 = 𝑟𝑛 cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃 = 𝑟𝑛𝑒𝑖𝑛𝜃 . 

Example 1.6:  

1- Write  1 −  𝑖, in the polar coordinate. 

Solution:  

 
2- Write 𝑧 = 1 −i 3 in the polar coordinate. 

Solution: 
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3- Write 𝑧 = (1 + 𝑖)8 in the form 𝑎 + 𝑖𝑏. 

Solution:   

First we write 𝑤 = (1 + 𝑖)  in the polar coordinate. 

𝑟 =  𝑤 =   1 2 +  1 2 =  2. 𝜃 = arctan  
1

1
 = arctan 1 . Since  𝑤 lies in the 

first quadrant, therefore,  𝜃 =
𝜋

4
= 45°. So, by De Moivre’s Formula 

 𝑧 = 𝑤8 = 𝑟8𝑐𝑖𝑠 8𝜃 =  2
8
𝑐𝑖𝑠  

8𝜋

4
  = 24𝑐𝑖𝑠 2𝜋 = 16 1 + 0𝑖 = 16. 

 

Geometry of Arithmetic 1.7: 

 
  Since we can picture complex numbers as points in the complex plane, we can 

also try to visualize the arithmetic operations “addition” and “multiplication.”  

 

1- To add 𝑧 and 𝑤 one forms the parallelogram with the origin, 𝑧 and 𝑤 as 

vertices. The fourth vertex then is 𝑧 +  𝑤. 

                   
2- To understand multiplication we first look at multiplication with 𝒊.  

If 𝑧 =  𝑎 + 𝑏𝑖,  then 

𝑖𝑧 =  𝑖(𝑎 +  𝑏𝑖)  =  𝑖𝑎 +  𝑏𝑖2 =  𝑎𝑖 −  𝑏 =  −𝑏 +  𝑎𝑖. 
Thus, to form 𝑖𝑧 from the complex number 𝑧 one rotates 𝑧 counterclockwise by 90 

degrees.                                                                                        
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If 𝑎 is any real number, then multiplication of  𝑤 =  𝑐 +  𝑑𝑖 by a gives 

𝑎𝑤 =  𝑎𝑐 +  𝑎𝑑𝑖, 

                     

So, aw points in the same direction, but is a times as far away from the origin. If  

𝑎 <  0 then aw points in the opposite direction.  

Next, to multiply 𝑧 =  𝑎 +  𝑏𝑖 and 𝑤 =  𝑐 +  𝑑𝑖 we write the product as 

𝑧𝑤 =  (𝑎 +  𝑏𝑖)𝑤 =  𝑎𝑤 +  𝑏𝑖𝑤. 
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Complex Roots of a Number 1.8: 

 For any given complex number 𝑤 ≠ 0 there is a method of finding all complex 

solutions of the equation 

𝑧𝑛 = 𝑤 -------------- (1)  

if n = 2, 3, 4, … is a given integer. 

To find these solutions you write 𝑤 in polar form, that is,  you find 𝑟 > 0 and 𝜃 

such that 𝑤 = 𝑟𝑒𝑖𝜃 . Then 

𝑧 = 𝑟1 𝑛 𝑒𝑖𝜃 𝑛 =  𝑤
𝑛

= 𝑤1 𝑛  

is a solution to (1). But it isn’t the only solution, because the angle 𝜃 for which  

𝑤 = 𝑟𝑒𝑖𝜃  isn’t unique,  it is only determined up to a multiple of 2𝜋. Thus, if we 

have found one angle  𝜃  for which 𝑤 = 𝑟𝑒𝑖𝜃 , then we can also write 

𝑤 = 𝑟𝑒𝑖(𝜃+2𝑘𝜋 ), 𝑘 = 0, ∓1, ∓2, … 

The 𝑛th 
roots of  w are then 

𝑧𝑘 = 𝑟1 𝑛 𝑒𝑖(
𝜃

𝑛
+2𝜋

𝑘

𝑛
) = 𝑟1 𝑛 [cos  

𝜃

𝑛
+ 2𝜋

𝑘

𝑛
 + 𝑖 sin(

𝜃

𝑛
+ 2𝜋

𝑘

𝑛
)]. 

Here  𝑘 can be any integer, so it looks as if there are infinitely many solutions. 

However, if you increase 𝑘  by 𝑛, then the exponent above increases by 2𝜋𝑖, and 

hence  𝑧𝑘  does not change. In a formula: 

 

𝑧𝑛  = 𝑧0,  𝑧𝑛+1= 𝑧1,  𝑧𝑛+2 = 𝑧2, …, 𝑧𝑛+𝑘 = 𝑧𝑘 . 

So if you take 𝑘 =  0, 1, 2,… , 𝑛 − 1 then you have had all the solutions. 

Example 1.9:  

1- Find all sixth roots of   𝑤 =  1.  

Solution: We have to solve 𝑧6 = 1. First we write 1 in polar form. 
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2- Find all cubic roots of  𝑤 = −1 + 𝑖. 

Solution: 

Let 𝑧3 = 𝑤. First we write −1 + 𝑖 in polar form. 

𝑟 =  𝑤 =  (−1)2 + (1)2 =  2. 

𝜃 = arctan  
−1

1
 = arctan⁡(−1). Since  𝑤 lies in the second quadrant, therefore,  

𝜃 =
3𝜋

4
= 135°. 

𝑧𝑘 = 𝑟1 𝑛 𝑒𝑖(
𝜃

𝑛
+2𝜋

𝑘

𝑛
) = 𝑟1 𝑛 [cos  

𝜃

𝑛
+ 2𝜋

𝑘

𝑛
 + 𝑖 sin(

𝜃

𝑛
+ 2𝜋

𝑘

𝑛
)]. 

n=3, k =0,1,2. 

𝑘 = 0:        𝑧0 =  2
1 3 

𝑒𝑖(

3𝜋
4
3

) = 21 6 [cos  
𝜋

4
 + 𝑖 sin(

𝜋

4
)]. 

𝑘 = 1:        𝑧1 =  2
1 3 

𝑒𝑖(
𝜋
4

+2𝜋
1
3

) = 21 6 [cos  
𝜋

4
+ 2𝜋

1

3
 + 𝑖 sin(

𝜋

4
+ 2𝜋

1

3
) 

= 21 6 [cos  
11𝜋

12
 + 𝑖 sin(

11𝜋

12
)]. 

𝑘 = 2:        𝑧2 =  2
1 3 

𝑒𝑖(
𝜋
4

+2𝜋
2
3

) = 21 6 [cos  
𝜋

4
+ 2𝜋

2

3
 + 𝑖 sin(

𝜋

4
+ 2𝜋

2

3
) 

= 21 6 [cos  
19𝜋

12
 + 𝑖 sin(

19𝜋

12
)]. 
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3- Find the solution of the equation  𝑧5 + 32 = 0. 

Solution: 

First we write 𝑤 = −32 in polar form. 

𝑟 =  𝑤 =  (−32)2 + (0)2 = 32. 

𝜃 = arctan  
0

−32
 = arctan⁡(0). Since  𝑤 lies in the second quadrant, therefore,  

𝜃 = 𝜋. 

𝑧𝑘 = 𝑟1 𝑛 𝑒𝑖(
𝜃

𝑛
+2𝜋

𝑘

𝑛
) = 𝑟1 𝑛 [cos  

𝜃

𝑛
+ 2𝜋

𝑘

𝑛
 + 𝑖 sin(

𝜃

𝑛
+ 2𝜋

𝑘

𝑛
)]. 

n=5, k =0,1,2,3,4. 
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Exercise1.10:  
1- Write in polar form 𝑟𝑒𝑖𝜃 , the following: 

(1)  𝑖   (2) −2   (3)  3 + 3𝑖   (4)   −3𝑖   (5) 1 − 𝑖 3    (6) 1 + 𝑖 3  (7) 4𝑖 . 
 

2- Put the following complex numbers in the form 𝑥 + 𝑖𝑦. 

(1) 𝑒3𝑖𝜋   (2) 3𝑒 𝑖
𝜋
4    (3) 𝜋𝑒−𝑖

𝜋
3   (4) 𝑒−5𝑖

𝜋
4     (5) 𝑒𝑖100𝜋 . 

 

3- Put (−1 + 𝑖)100  in the form  𝑥 + 𝑖𝑦. 

 

4- Let 𝑧1 =  3 + 3𝑖, 𝑧2 = 1 + 𝑖 2, 𝑧3 = 4𝑖. Find the following in the form 

𝑥 + 𝑖𝑦. 
𝑧3

2(𝑧1
2 + 𝑧2

2)2

𝑧1 𝑧2

 

5- Prove that  
−1±𝑖 3

2
 

3

= 1. 

6- Prove that (1 + 𝑖)𝑛 + (1 − 𝑖)𝑛 = 2
𝑛+2

2  cos(
𝑛𝜋

4
).   

7- Prove by polar form that  𝑖 1 − 𝑖 3   3 + 𝑖 = 2 + 𝑖2 3. 

 

8- Find the modulus of the following: 

(1)  
−2+3𝑖

3−2𝑖
      

(2)  
1−4𝑖

4+3𝑖
  

 

9- Find and draw all real complex solutions of the following: 

(1) 𝑧2 + 7𝑧 + 10 = 0.                        (2) 𝑧3 + 8 = 0.  
(3) 𝑧5 − 16𝑧 = 0.                               (4)   𝑧5 − 32 = 0. 
(5) 𝑧4 + 2𝑧2 − 3 = 0.                        (6) 3𝑧6 = 𝑧3 + 2. 
(7) 𝑧3 − 125 = 0.                               (8) 𝑧2 + 6𝑧 + 10 = 0. 
 

10- Compute the following: 

(1)  (1 − 𝑖 3)2 − (4 − 𝑖 3) . 

(2)  (3 − 𝑖)2(5 − 𝑖 2) . 
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 Polynomial Functions 

 

Definition 2.1:  (Polynomial Function ) 
 
If n is a nonnegative integer, a function in one variable that can be written in 

the form 
               𝑃 𝑥 =  𝑎𝑛 𝑥

𝑛 
+ 𝑎𝑛−1𝑥𝑛−1

 
+ . . . + 𝑎1𝑥 + 𝑎0,   𝑎𝑛  ≠   0   - - -  (1) 

 
is called a polynomial function of degree 𝒏. The numbers 

𝑎𝑛 ,   𝑎𝑛−1,… ,𝑎1,𝑎0 are called the coefficients of 𝑃(𝑥). 
Remark 2.2: 

(i) We will assume that the coefficients of a polynomial function are 

complex numbers, or real numbers, or rational numbers, or integers, 

depending on our interest. Similarly, the domain of a polynomial function 

can be the set of complex numbers, the set of real numbers, or an 

appropriate subset of either, depending on the situation. 

(ii) If 𝑛 = 0 and 𝑎0 ≠   0, then (1) consists only the number 𝑎0 and its 

degree is 0. 

(iii) The polynomial consisting of just the number  0  does not have degree, 

and it is called Zero polynomial(function), 𝑃(𝑥)  = 0. 
(iv) The coefficient an is called the leading coefficient. 

(v) The coefficient 𝑎0 is called the constant term. 

(vi) Each 𝑎𝑖𝑥
𝑖   𝑖 = 0,1,… , 𝑛 is called a term of the polynomial. 

 

Examples 2.3:     

(i) 𝑓 (𝑥)  =  𝑎𝑥 +  𝑏,      a ≠ 0    (Linear function). 

(1) The degree is 1. 

(2)  The coefficients are 𝑎1 = 𝑎, 𝑎0 = 𝑏. 
(3) The leading coefficient is a. 

(4) The constant term is 𝑏. 

(5) The terms are 𝑎𝑥, 𝑏. 

(ii) 𝑓 (𝑥)  =  𝑎𝑥2   
+  𝑏𝑥 +  𝑐,  a ≠ 0 (Quadratic function). 

(1) The degree is 2. 

(2)  The coefficients are 𝑎2 = 𝑎, 𝑎1 = 𝑏,   𝑎0 = 𝑐. 
(3) The leading coefficient is 𝑎. 

(4) The constant term is 𝑐. 

(5) The terms are 𝑎𝑥2, 𝑏𝑥, 𝑐. 
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(iii) 𝑓 (𝑥)  =  𝑎𝑥3   
+  𝑏𝑥2 +𝑐𝑥 +𝑑,  a ≠ 0 (Cubic function). 

(1) The degree is 3. 

(2)  The coefficients are 𝑎3 = 𝑎, 𝑎2 = 𝑏, 𝑎1 = 𝑐,  𝑎0 = 𝑑. 
(3) The leading coefficient is 𝑎. 

(4) The constant term is 𝑑. 

(5) The terms are 𝑎𝑥3, 𝑏𝑥2𝑐𝑥, 𝑑. 

 

Properties of  Polynomials 2.4: 

Let      𝑝 𝑥 = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 =  𝑎𝑖𝑥
𝑖 .𝑛

𝑖=0  

and  

𝑞 𝑥 = 𝑏𝑚𝑥𝑚 + 𝑏𝑚−1𝑥
𝑚−1 + ⋯ + 𝑏1𝑥 + 𝑏0 =  𝑏𝑗𝑥

𝑗

𝑚

𝑗=0

 

be two polynomials. Then  

(i) 𝑝 𝑥 = 𝑞 𝑥 ⟺ 𝑛 = 𝑚    𝑎𝑛𝑑  𝑎𝑛 = 𝑏𝑛 , 𝑎𝑛−1 = 𝑏𝑛−1, … 𝑎0 = 𝑏0.  
(ii) If  𝑚 ≤ 𝑛 then 𝑝 𝑥 + 𝑞 𝑥  is a polynomial of degree  ≤ 𝑛. 

 

𝑝 𝑥 = 𝑥2 − 2𝑥 + 1        𝑞 𝑥 = 5𝑥 − 𝑥2 + 1 

𝑝 𝑥 + 𝑞 𝑥 =  1 − 1 𝑥2 +  −2 + 5 𝑥 +  1 + 1 = 3𝑥 + 2         (of degree 1). 

(iii) 𝑝 𝑥 ∙ 𝑞 𝑥  is a polynomial of degree  𝑛 + 𝑚. 

 

𝑝 𝑥 = 𝑥2 − 2𝑥 + 1        𝑞 𝑥 = 5𝑥 − 𝑥2 + 1 

𝑝 𝑥 ∙ 𝑞 𝑥 = 𝑥2 5𝑥 − 𝑥2 + 1 − 2𝑥 5𝑥 − 𝑥2 + 1 +  5𝑥 − 𝑥2 + 1  

                              = −𝑥4 + 7𝑥3 − 10𝑥2 + 3𝑥 + 1        (of degree 4). 

(iv) If   𝑝 𝑥 ≠ 0   and 𝑝 𝑥 ∙ 𝑞 𝑥 = 0 then 𝑞 𝑥 = 0 and if   𝑞 𝑥 ≠ 0   and  

      𝑓 𝑥 ∙ 𝑞 𝑥 = 𝑝 𝑥 ∙ 𝑞 𝑥   then 𝑓 𝑥 = 𝑝 𝑥 . 

 

Definition 2.5: (Zeros or  Roots)  

A number  𝑟  is said to be a zero or root of a function  𝑃(𝑥)  if  𝑃(𝑟)  = 0. 

 

     The zeros of  𝑃(𝑥) are the solutions of the equation 𝑃(𝑥)  =  0. So if the 

coefficients of a polynomial  𝑃(𝑥) are real numbers, then the real zeros of  𝑃(𝑥) 

are just the 𝑥 intercepts of the graph of  𝑃(𝑥). For example, the real zeros of the 

polynomial  𝑃(𝑥) =  𝑥2  −  4  are  2  and  −2, the 𝑥- intercepts of the graph of  

𝑃(𝑥)  [Fig. (a)]. However, a  polynomial may have zeros that are not 𝑥 - intercepts. 

𝑄(𝑥) =  𝑥2  +  4, for example, has zeros 2𝑖 and  −2𝑖, but its graph has no  
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𝑥- intercepts [Fig. (b)]. 

 
Example 2.6: 

Graph the polynomial  𝑃(𝑥)  =  𝑥3 − 12𝑥 −  16, −5  ≤ 𝑥 ≤  5. List the real 

zeros points. 

Solution:   First we construct a table of values by calculating P(x) for each integer 

x,  −5  ≤ 𝑥 ≤  5.  
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Then we plot the points in the table and join them with a smooth curve. The zeros 

are −2 and 4. 

Caution 2.7:  Finding the real zeros points of a polynomial is usually more 

difficult than suggested by the example. In example above, how did we know that 

the real zeros were between −5 and 5 rather than between, say, 95 and 105? Could 

there be another real zero just to the left or right of −2? 

 

 To answer such questions we must view polynomials from an algebraic 

perspective. Polynomials can be factored. So next we will study the division and 

factorization of polynomials. 

 

Polynomial Division 2.8: 

We can find quotients of polynomials by a long-division process similar to the one 

used in arithmetic. Example below will illustrate the process. 

 

Example 2.9: (Polynomial Long Division) 

Divide 𝑃 𝑥 =  3𝑥3  −  5 + 2𝑥4 − 𝑥 by (2 +  𝑥). 
 

Solution:  First, rewrite the dividend 𝑃(𝑥) in descending powers of  𝑥, inserting 0 

as the coefficient for any missing terms of degree less than 4: 

 

𝑃 𝑥 =  2𝑥4 + 3𝑥3 + 0𝑥2 − 𝑥 − 5. 

 

Similarly, rewrite the divisor (2 +  𝑥).in the form (𝑥 + 2). Then divide the first 

term x of the divisor into the first term 2x
4
 of the dividend. Multiply the result, 

2𝑥3, by the divisor, obtaining  2x
4
 + 4x

3
. Line up like terms, subtract as in 

arithmetic, and bring down 0x
2
. Repeat the process until the degree of the 

remainder is less than the degree of the divisor. 
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The procedure illustrated in example above is called the division algorithm. The 

concluding equation of example may be multiplied by the divisor (𝑥 + 2) to give 

the following form: 

  
This last equation is an identity: it is true for all replacements of  𝑥  by real or 

complex numbers including  𝑥 = −2. Theorem below, which we state without 

proof, gives the general result of applying the division algorithm when the divisor 

has the form  (𝑥 − 𝑟). 
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Theorem 2.10: (Division Algorithm) 

For each polynomial 𝑃(𝑥) of degree greater than 0 and each number r, there exists 

a  unique polynomial 𝑄(𝑥) of degree  less than P(x) and a unique number 𝑅 such 

that 

𝑃(𝑥) =  (𝑥 −  𝑟)𝑄(𝑥)  +  𝑅. 

 

The polynomial 𝑃 𝑥  is called the dividend, 𝑄(𝑥) is the quotient, (𝑥 –  𝑟) is the 

divisor, and 𝑅 is the remainder. Note that 𝑅 may be 0. 

 

Synthetic Division 2.11: 

 

       Divide    𝑃 𝑥 =  3𝑥3  −  5 + 2𝑥4 − 𝑥    by    (2 +  𝑥). 
synthetic division for the long division of  𝑃 𝑥 . First write the coefficients of the 

dividend and the negative of the constant term of the divisor in the format shown 

below at the left. Bring down the 2 as indicated next on the right, multiply 

by −2, and record the product −4. Add 3 and −4, bringing down their sum −1. 

Repeat the process until the coefficients of the quotient and the remainder are 

obtained. 
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Example 2.12: Use synthetic division to divide   

𝑃 𝑥 =  4𝑥5  − 30𝑥3 − 50𝑥 − 2  by  (𝑥 +  3). 
Find the quotient and remainder. Write the conclusion in the form 

𝑃(𝑥)  =  (𝑥 − 𝑟)𝑄(𝑥)  +  𝑅  
of  Division Algorithm Theorem. 

Solution:  Because  𝑥 + 3 =  𝑥 − (−3),  we have 𝑟 = −3 and 

 

 

 
 

Major Problems 2.13: 

(i) Given that 𝑃 𝑥  is a polynomial and 𝑟 is a number, find 𝑃 𝑟 . 
(ii) Given that 𝑃 𝑥  is a polynomial and 𝑀 is a number, find the solution set 

of the polynomial equation  𝑃 𝑥 = 𝑀. 
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Theorem 2.14: (Remainder Theorem) 

If 𝑅 is the remainder after dividing the polynomial 𝑃(𝑥) by ( 𝑥 –  𝑟), then 

𝑃(𝑟)  = 𝑅. 

 

Example 2.15: If  𝑃(𝑥)  =  4𝑥4 + 10𝑥3  + 19𝑥 + 5, find P(−3) by 

 (i)  Using the remainder theorem and synthetic division. 

(ii) Evaluating 𝑃(−3) directly. 

Solution:   

(i) Use synthetic division to divide 𝑃(𝑥) by x − (−3). 
 

  
(ii) 𝑃(−3) = 4(−3)

4
 +10(−3)

3
 + 19(−3) + 5=2. 

(iii)  

Theorem 2.16: ( Factor Theorem)                   

If 𝑟 is a zero of the polynomial P(x), then (𝑥 –  𝑟) is a factor of 𝑃(𝑥). Conversely, 

if (𝑥 −  𝑟) is a factor of 𝑃(𝑥), then 𝑟 is a zero of 𝑃(𝑥). 
Proof: 

The remainder theorem shows that the division algorithm equation, 

𝑃(𝑥)  =  (𝑥 − 𝑟)𝑄(𝑥)  +  𝑅  
can be written in the form where 𝑅 is replaced by 𝑃(𝑟): 

𝑃(𝑥)  =  (𝑥 − 𝑟)𝑄(𝑥)  +  𝑃(𝑟)  
Therefore,  x- r  is a factor of  P(x)  if and only if 𝑃(𝑟) = 0, that is, if and only if  

𝑟  is a zero of the polynomial 𝑃(𝑥). 
Example 2.17:   
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Example 2.18:  

Find the remainder when 𝑓 𝑥 = 2𝑥4 − 3𝑥3 + 7𝑥 is divided by (𝑥 + 2). 

Solution:   
 

(i) Remainder Theorem. Since   𝑥 − 𝑟 =  𝑥 + 2 ,  it follows that 

𝑟 = −2. Thus, 

𝑅 = 𝑓 −2 = 32 + 24 − 14 = 42. 
(ii) Long Division.  

                2𝑥3 − 7𝑥2 + 14𝑥 − 21 

 𝑥 + 2 |   2𝑥4 − 3𝑥3 + 0𝑥2 + 7𝑥 + 0 

             ∓2𝑥4 ∓ 4𝑥3 

                                                  −7𝑥3+0𝑥2 + 7𝑥 + 0 

                                                       ±7𝑥3 ± 14𝑥2 

                                                                   14𝑥2 + 7𝑥 + 0 

                                                                 ∓14𝑥2 ∓ 28𝑥  

                                                                      −21𝑥 + 0 

                                                                      ±21𝑥 ± 42 

                                                                                      +42  

This division shows that not only that the remainder is 42 but also that quotient 

𝑞(𝑥) is 𝑞 𝑥 = 2𝑥3 − 7𝑥2 + 14𝑥 − 21. 

(iii) Synthetic substitution. 

2    − 3  + 0     + 7  + 0  

                             

           −4  + 14    − 28   + 42  

                      −2     2    − 7  + 14    − 21  + 42 = 𝑅 = 𝑓(−2)     

 

Now compare the other number in line three with the coefficient in 𝑞 𝑥 ; they are 

identical. 
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Example 2.19:  Find the quotient and remainder when  𝑓 𝑥 = 2𝑥3 − 3𝑥2 + 4 is 

divided by (𝑥 − 2). 

Solution:   

Here,  𝑥 − 𝑎 = 𝑥 − 2, and hence 𝑎 = 2. Using synthetic division, we obtain  

2    − 3  + 0     + 4  

                             

        +4  + 2     + 4  

                         2           2     + 1  + 2    + 8 = 𝑅 = 𝑓(2 ) 

 

Thus,  𝑞 𝑥 = 2𝑥2 + 𝑥 + 2 and 𝑅 = 8. 

We can check this result by long division. 

Example 2.20: Determine whether (𝑥 − 2) is a factor of   𝑓 𝑥 = 𝑥6 − 64. 

Solution: 

(i) Factor theorem.  𝑎 = 2, 𝑓 2 = 26 − 64 = 64 − 64 = 0. 

Thus, 𝑥 − 2 is a factor of  𝑓 𝑥 . 

(ii) Synthetic division. 

   

      1  + 0  + 0  + 0 + 0 +    0 − 64  

                             

                +2 + 4   + 8 + 16 + 32 + 64   

                       2     1 + 2 + 4   + 8  + 16 + 32 + 0 = 𝑅 = 𝑓(2)     

Hence, 𝑥 − 2 is a factor of   𝑓 𝑥 = 𝑥6 − 64  and the second factor is  

𝑥5 + 2𝑥4 + 4𝑥3 + 8𝑥2 + 16𝑥 + 32. That is,  

𝑓 𝑥 = 𝑥6 − 64 = (𝑥 − 2)(𝑥5 + 2𝑥4 + 4𝑥3 + 8𝑥2 + 16𝑥 + 32). 
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Example 2.21: Determine whether (𝑥 − 1) is a factor of    

𝑓 𝑥 = 𝑥3 + 7𝑥2 − 3𝑥 − 4. 

Solution: Synthetic division gives  

1   + 7  − 3    − 4  

                             

        +1   + 8     + 5  

                              1     1     + 8   + 5    + 1 = 𝑅 = 𝑓(1 ) 

Since 𝑓 1 = 1 ≠ 0, then  𝑥 − 1  is not a factor of the given polynomial. 

Theorem 2.22:  (Zeros of Polynomials) 
A polynomial of degree n with real coefficients has at most n real zeros. 

Example 2.23:  

(i) 𝑓 𝑥 = 𝑥2 − 1 =  𝑥 + 1 (𝑥 − 1) has two real roots 1 and -1. 

(ii) 𝑓 𝑥 = 𝑥2 + 1 has no real roots. 

(iii) 𝑓 𝑥 = 𝑥3 + 𝑥2 + 𝑥 + 1 =  𝑥 + 1 (𝑥2 + 1) has one real roots -1. 

 

Let  𝑃 𝑥 =  𝑎𝑛 𝑥
𝑛 

+ 𝑎𝑛−1𝑥𝑛−1 
+ . . . + 𝑎1𝑥 + 𝑎0,   𝑎𝑛  ≠   0      

(i) 𝑎𝑖    are complex  coefficients            Complex zeros(Imaginary zeros). 

(ii) 𝑎𝑖     are real coefficients                    
𝑃𝑢𝑟𝑒 𝑟𝑒𝑎𝑙 𝑧𝑒𝑟𝑜𝑠

𝑃𝑢𝑟𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑧𝑒𝑟𝑜𝑠
𝑅𝑒𝑎𝑙 𝑧𝑒𝑟𝑜𝑠 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑧𝑒𝑟𝑜𝑠

   

 

Real Zeros 2.24: 

The real zeros of a polynomial 𝑃(𝑥) with real coefficients are just the 𝑥- intercepts 

of the graph of 𝑃(𝑥). So an obvious strategy for finding the real zeros consists of 

two steps: 

(1) Graph 𝑃(𝑥). 

(2) Approximate each 𝑥- intercept. 
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We emphasize the approximation of real zeros in this section; the problem of 

finding zeros exactly, when possible, is considered later. 

 

Theorem 2.25: (Descartes Rule of Signs) 

Given a polynomial 𝑃 𝑥  with real coefficients: 

(1) Positive Zero: The number of positive zeros of 𝑃 𝑥  is never greater than the 

number of variations in sign 𝑃 𝑥  and if less than always by an even number. 

(2) Negative Zero: The number of negative zeros of 𝑃 𝑥  is never greater than the 

number of variations in sign 𝑃 −𝑥  and if less than always by an even number. 

Example 2.26: Construct a table showing the possible combination of positive, 

negative and imaginary zero of the following polynomials: 

(1) 𝑃 𝑥 = 3𝑥4 − 2𝑥3 + 3𝑥 − 5. 

(2) 𝑄 𝑥 = 2𝑥6 + 𝑥4 − 𝑥 + 3. 

Solution:  

(1)    𝑃 −𝑥 = 3𝑥4 + 2𝑥3 − 3𝑥 − 5.               (2) 𝑄 −𝑥 = 2𝑥6 + 𝑥4 + 𝑥 + 3 

 

+ − 𝐼 
3 1 0 

 1 1 2 

 

 

 Theorem 2.27: (Upper and Lower Bound Theorem) 

 
 

 

 

+ − 𝐼 
2 0 4 

0 0 6 
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Example 2.28:  

Let P(x) =x
4 
–2x

3
 –10x

2
 + 40x – 90.  Find the smallest positive integer and the 

largest negative integer that, by Upper and Lower Bound Theorem, are upper and 

lower bounds, respectively, for the real zeros of 𝑃(𝑥). 
Solution:  

We perform synthetic division for 𝑟 =  1, 2, 3, . . . until the quotient row turns 

nonnegative; 

then repeat this process for 𝑟 =  −1, −2, −3, . . . until the quotient row alternates 

in sign. 

We organize these results in the synthetic division table shown below. In a 

synthetic division table we dispense with writing the product of 𝒓 with each 

coefficient in the quotient and simply list the results in the table. 

 
 

        The graph of P(x) =x
4 
–2x

3
 –10x

2
 + 40x – 90 for  −5 ≤ 𝑥 ≤ 5 is shown in the 

above Figure. Upper and Lower Bound Theorem guarantees that all the real zeros 

of 𝑃(𝑥) are between  −5 and 5. We can be certain that the graph does not change 

direction and cross the 𝑥- axis somewhere outside the viewing window in the 

Figure. 
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Example 2.29: 

Let 𝑃(𝑥) =𝑥3 − 30𝑥2  + 275𝑥 − 720. Find the smallest positive integer multiple 

of 10 and the largest negative integer multiple of 10 that, by Upper and Lower 

Bound Theorem, are upper and lower bounds, respectively, for the real zeros of 

𝑃(𝑥). 

Solution:  We construct a synthetic division table to search for bounds for the 

zeros of 𝑃(𝑥). The size of the coefficients in 𝑃(𝑥) indicates that we can speed up 

this search by choosing larger increments between test values. 

 
Theorem 2.30: (Location Theorem) 

If 𝑃(𝑥) is a polynomial with real coefficients and if  𝑃(𝑎) and 𝑃(𝑏)  are of 

opposite sign, then there is at least one real zero between 𝑎 and 𝑏. 

Example 2.31: Show that there is at least one real zero of  

𝑃 𝑥 = 𝑥4 − 2𝑥3 − 6𝑥2 + 6𝑥 + 9 

between 1 and 2. 
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Solution: It is enough to show that 𝑃(1)   and 𝑃(2)  have opposite signs. 

             1      − 2     − 6      6       9                      1      − 2     − 6      6        9                      

                          1     − 1   − 7  − 1                               2          0   − 12 − 12   

       1    1     −1    − 7   − 1      8 = 𝑃(1)   2    1        0    − 6   − 6    − 3 = 𝑃(2)          

 

Complex Zeros and Rational Zeros of  Polynomials  2.32: 

(i)  The Fundamental Theorem of Algebra. 

(ii)  Factors of Polynomials with Real Coefficient. 

(iii)  Rational Zeros of Polynomials with Real Coefficient. 

 

Theorem 2.33:  (Fundamental Theorem of Algebra) 

Every polynomial of degree 𝑛 > 0 with complex coefficients has a complex zero. 

 

Theorem 2.34:   (𝒏 Linear Factors Theorem) 

Every polynomial of degree 𝑛 > 0 with complex coefficients can be factored as a 

product of  𝑛 linear factors. 

Proof: 

If 𝑃(𝑥) is a polynomial of degree 𝑛 > 0 with complex coefficients, then by 

Fundamental Theorem of Algebra it has a zero r1. So (x - r1) is a factor of 𝑃(𝑥) by 

Factor Theorem, and  

𝑃(𝑥)  =  (𝑥 − 𝑟1)𝑄(𝑥),    𝑑𝑒𝑔 𝑄(𝑥) =  𝑛 –  1. 
Now, if deg 𝑄(𝑥)  >  0, then, applying the Fundamental Theorem to 𝑄(𝑥), 𝑄(𝑥) 

has a root 𝑟2   and therefore a factor (𝑥 − 𝑟2 ). (It is possible that 𝑟2 is equal to 𝑟1.) 

By continuing this reasoning we obtain a proof of the theorem. 

 

Definition 2.35: The number of linear factors that have zero 𝑟 is said to be the 

multiplicity of  𝑟. 

 

Example 2.36:  The polynomial  

 𝑃(𝑥)  =  (𝑥 −  5)3(𝑥 + 1)2(𝑥 −  6𝑖)(𝑥 +  2 +  3𝑖)  has degree 7 and is written 

as a product of seven linear factors.  𝑃(𝑥) has just four zeros, 

namely 5, −1, 6𝑖, and −2 − 3𝑖.  
Because the factor (𝑥 − 5) appears to the power 3, we say that the zero 5 has 

multiplicity 3.  
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−1 has multiplicity 2,  

6𝑖 has multiplicity 1 

(−2 −  3𝑖) has multiplicity 1.  

A zero of multiplicity 2 is called a double zero, and a zero of multiplicity 3 is 

called triple zero.  

 

Note that the sum of the multiplicities is always equal to the degree 

of the polynomial: for 𝑃(𝑥)         3 +  2 + 1 +  1 =  7. 
 

Factors of Polynomials with Real Coefficients 2.37: 

 

Theorem 2.38: (Imaginary Zeros of Polynomials with Real Coefficients) 

Imaginary zeros of polynomials with real coefficients, if they exist, occur in 

conjugate pairs. 

Proof:  The prove is given for quadratic polynomial ( polynomial of degree 2). By 

same way for degree >  2. 

 

 
 

Theorem 2.39: (Linear and Quadratic Factors Theorem) 

If 𝑃(𝑥) is a polynomial of degree 𝑛 >  0 with real coefficients, then 𝑃(𝑥) can be 

factored as a product of linear factors (with real coefficients) and quadratic factors 

(with real coefficients and imaginary zeros). 
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Proof: 

If a polynomial 𝑃(𝑥) of degree 𝑛 > 0 has real coefficients and a linear factor of 

the form 𝑥 − ( 𝑝 +  𝑞𝑖) where 𝑞 ≠  0, then, by Imaginary Zeros of Polynomials 

with Real Coefficients Theorem, P(x) also has the linear factor 𝑥 − ( 𝑝 − 𝑞𝑖). 

But   

[𝑥 − ( 𝑝 + 𝑞𝑖)][𝑥 − ( 𝑝 − 𝑞𝑖)] = 𝑥2
 − 2𝑝𝑥 + 𝑝2  − 𝑞2

 

which is a quadratic factor of P(x) with real coefficients and imaginary zeros. 

 

Example 2.40: 

Factor P(x) =x
3
 + x

2
 + 4x+ 4 in two ways: 

(i) As a product of linear factors (with real coefficients) and quadratic factors 

(with real coefficients and imaginary zeros) 

(ii)  As a product of linear factors with complex coefficients 

Solution:   

(i)  Note that 𝑃(−1)  =  0, so −1 is a zero of 𝑃(𝑥). Therefore,  (𝑥 +  1) is a 

factor of 𝑃(𝑥). Using synthetic division, the quotient is 𝑥2
 +4, which has 

imaginary roots. Therefore, 

P(x) = (x+1)(x
2
 + 4) 

 

An alternative solution is to factor by grouping: 

 

x
3
 + x

2
 + 4x + 4 = x

2
(x + 1) +4(x +1) 

                                                                = (x
2
 + 4)(x + 1). 

(ii) Because x
2
 + 4 has roots 2i and  -2i, 

P(x) = (x +1)(x - 2i )(x + 2i ). 

 

Theorem 2.41: (Real Zeros and Polynomials of Odd Degree) 
Every polynomial of odd degree with real coefficients has at least one real zero. 

 

Example 2.42:  Let 𝑃(𝑥) be a third-degree polynomial with real coefficients. Are 

the following statements is false? 

(1) 𝑃(𝑥) has at least one real zero. 

(2) 𝑃(𝑥) has three zero. 

(3) 𝑃(𝑥) can have two real zero and one imaginary zero. 

Solution: 

(1) True  

(2) True. 

(3) False. 
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Example 2.43: What are the possible combinations of real and imaginary zeros  

for the polynomial       𝑃 𝑥 = 3𝑥5 − 2𝑥4 + 𝑥2 −  2𝑥 − 5. 

Solution:  

Real   Imaginary 

1 4 

3 2 

5 0 

Rational Zeros 2.44: 
First note that a polynomial with rational coefficients can always be written as a 

constant times a polynomial with integer coefficients. For example, 

 

𝑃 𝑥 =
1

2
𝑥3 −

2

3
𝑥2 +

7

4
𝑥 + 5 

           𝑃 𝑥 =
1

12
(6𝑥3 − 8𝑥2 + 21𝑥 + 60). 

 

Because the zeros of P(x) are the zeros of  6𝑥3 − 8𝑥2 + 21𝑥 + 60, it is 

sufficient, for the  purpose of finding rational zeros of polynomials with rational 

coefficients, to study just the polynomials with integer coefficients. 

 

We introduce the rational zero theorem by examining the following quadratic 

polynomial whose zeros can be found easily by factoring: 

 

P(x) = 6x
2
 - 13x- 5 = (2x - 5)(3x + 1) 

Zeros of P(x):    
5

2
    𝑎𝑛𝑑    

−1

3
. 

Notice that the numerators 5 and -1 of the zeros are both integer factors of  -5, the 

constant term in P(x). The denominators 2 and 3 of the zeros are both integer 

factors of 6, the leading coefficient in P(x). 
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Theorem 2.45: (Rational Zero Theorem)

 
Remark 2.46: Rational Zero Theorem enables us to construct a finite list of 

possible rational zeros of P(x). Each number in the list must then be tested to 

determine whether or not it is actually a zero. 

Example 2.47: 
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Here, −3, −2 𝑎𝑛𝑑 
1

2
 are rational zeros of 𝑃(𝑥). Because a third-degree polynomial 

can have at most three zeros, we have found all the rational zeros. There is no need 

to test the remaining candidates in list (3). 

Remark 2.48: 
As we saw in the solution of the above example, rational zeros can be located by 

simply evaluating the polynomial. However, if we want to find multiple zeros, 

imaginary zeros, or exact values of irrational zeros, we need to consider reduced 

polynomials.  

If 𝑟 is a zero of a polynomial 𝑃(𝑥), then we can write 
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Example 2.49: 
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Example 2.50:

 
 

 

So, the exact zeros of 𝑃(𝑥) are 1 (multiplicity 2), (2 +  𝑖), and  (2 –  𝑖). 

Remark 2.51: 

We were successful in finding all the zeros of the polynomials in the above 

examples because we could find sufficient rational zeros to reduce the original 

polynomial to a quadratic. This is not always possible. For example, the 

polynomial 

𝑃 𝑥 = 𝑥3 + 6𝑥 − 2 
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has no rational zeros, but does have an irrational zero at 𝑥 ≈ 0.32748. The other 

two zeros are imaginary. The techniques we have developed will not find the exact 

value of these roots. 

 

The following examples summarize the strategy for finding rational zeros. 

Example 2.52:   

(1) Find all rational zeros for 𝑃 𝑥 = 2𝑥3 − 𝑥2 − 8𝑥 + 4. 
Solution: 

Step 1.  List the possible rational zeros:    ±1, ±2, ±4, ±
1

2
. 

Step 2. List possible combinations of zeros: 

 

𝑃 𝑥 = 2𝑥3 − 𝑥2 − 8𝑥 + 4 

𝑃 −𝑥 = −2𝑥3 − 𝑥2 + 8𝑥 + 4 

 

+ − 𝐼 
2 1 0 

 0 1 2 

Step 3. Construct a synthetic division table start with 𝑟 = 0. 

 

 2 −1 −8 4 

0 2 −1 −8 4 𝑃 𝑥  change sign 

1 2 1 −7 −3 
1

2
 

2 0 −8  0                      
1

2
  is zero of  𝑃 𝑥  

𝑃 𝑥 =  𝑥 − 𝑟 𝑄 𝑥 =  𝑥 −
1

2
 (2𝑥2 − 8) 

Using quadratic formula to find the zeros of  (2𝑥2 − 8)  

𝑥 =
± 64

4
= ±2 

Thus, the rational zeros of  𝑃 𝑥  are  ±2,   
1

2
. 

 

(2) Find all zeros for 𝑃 𝑥 = 2𝑥3 − 5𝑥2 − 8𝑥 + 6. 
Solution: 

Step 1.  List the possible rational zeros:    ±1, ±2, ±3, ±6, ±
1

2
 , ±

3

2
. 

Step 2. List possible combinations of zeros: 

 

𝑃 𝑥 = 2𝑥3 − 5𝑥2 − 8𝑥 + 6 
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𝑃 𝑥 = −2𝑥3 − 5𝑥2 + 8𝑥 + 6 
 

  

+ − 𝐼 
2 1 0 

 0 1 2 

Step 3. Construct a synthetic division table. 

 

 2 −5 −8 6 

0 2 −5 −8 6                     𝑃 𝑥  change sign 

1 2 −3 −11 −5 
1

2
 

2 −4 −10 1        1 2  is not zero, so between 0 and 1.   There                                                                                                                

is irrational zero(between 1 2  and 1 )  

2 2 −1 −10 −14 

3 2 1 −5 −9                  𝑃 𝑥  change sign 

4 2 3 4 22             There    is irrational zero between 3 and 4  

−1 2 −7 −1 7                           𝑃 𝑥  change sign 

−2 2 −9 10 −14 

−
3

2
 

2 −8 4 0 

 

 

From the synthetic division table, we know that 𝑃 𝑥  has three real zeros, one 

negative and two positive −
3

2
 is the negative zero, and the two positive zeros must 

be irrational. 

𝑃 𝑥 =  𝑥 − 𝑟 𝑄 𝑥 =  𝑥 +
3

2
 (2𝑥2 − 8𝑥 + 4) 

Using quadratic formula to find the zeros of  (2𝑥2 − 8𝑥 + 4) 

𝑥 =
8± 64−32

4
= 2 ±  2. The zeros of  𝑃 𝑥  are −

3

2
, 2 ±  2. 

2 −  2 ≈ 0.59  ------------------------> 0 < 0.59 < 1 

2 +  2 ≈ 3.41  ------------------------> 3 < 3.41 < 4. 

 

(3) Find all rational zeros for 𝑃 𝑥 = 𝑥4 − 7𝑥3 + 17𝑥2 − 17𝑥 + 6. 
Solution: 

Step 1.  List the possible rational zeros:    ±1, ±2, ±3, ±6. 

Step 2. List possible combinations of zeros: 
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𝑃 𝑥 = 𝑥4 − 7𝑥3 + 17𝑥2 − 17𝑥 + 6 

𝑃 −𝑥 = 𝑥4 + 7𝑥3 + 17𝑥2 + 17𝑥 + 6 

 

+ − 𝐼 
4 0 0 

 2 0 2 

0 0 4 

Step 3. Construct a synthetic division table. 

From the sign table we don’t need to check the negative rational zero. 

 

 1 −7 17 −17 6 

1 1 −6 11 −6 0    

 

𝑃 𝑥 =  𝑥 − 𝑟 𝑄 𝑥 =  𝑥 − 1 (𝑥3 − 6𝑥2 + 11𝑥 − 6) 

Using the  way for 𝑄 𝑥 = (𝑥3 − 6𝑥2 + 11𝑥 − 6). 

 

Step 1.  List the possible rational zeros:    1, 2, 3, 6. 

Step 2. List possible combinations of zeros: 

+ − 𝐼 
3 0 0 

 1 0 2 

Step 3. Construct a synthetic division table. 

 

 1 −6 11 −6 

1 1 −5 6                     0 = 𝑄(1) 

𝑄 𝑥 =  𝑥 − 1 (𝑥2 − 5𝑥 + 6). 

 𝑥2 − 5𝑥 + 6 =  𝑥 − 3 (𝑥 − 2). The zeros of  𝑄 𝑥  are  

1 (of multiplicity 2)  2 and  3. 

 

 

 

 

 

 

 

 

 



Finite Mathematics II                          Polynomial Functions           College of Science\ Dept. of Math. 

                                                                                                                                                

                                                                 Chapter Two 
 

40 
 

Relationships Between the Roots and Coefficients  2.54: 

 

Let f(x) be a polynomial of degree n with roots r1, r2, …, rn and coefficients 

a1,a2,…,an . Then we can written f(x) as follows: 

 
𝑃 𝑥 =  𝑎0 𝑥

𝑛 
+ 𝑎1𝑥𝑛−1

 
+ . . . + 𝑎𝑛−1𝑥 + 𝑎𝑛 ,   𝑎0  ≠   0   - - -  (1) 

       𝑃 𝑥 = a0 𝑥−∝1  𝑥−∝2 … 𝑥−∝𝑛  . 
 

If n=2, we have a polynomial of degree 2 defined as follows: 

𝑃 𝑥 = 𝑎0  𝑥
2 

+ 𝑎1𝑥
 
+ 𝑎2 = 𝑎0 𝑥−∝1  𝑥−∝2 

= 𝑎0 𝑥2 −𝑥 ∝1−𝑥 ∝2+∝1∝2 

= 𝑎0 𝑥2 − (∝
1
+∝2)𝑥 +∝1∝2  

 

⇒ 𝑃 𝑥 =  𝑎0 𝑥
2 

+ 𝑎1𝑥
 
+ 𝑎2 =  𝑎0 𝑥

2 − 𝑎0(∝1+∝2)𝑥
 
+ 𝑎0 ∝1∝2 

 
𝑎1 = −𝑎0(∝1+∝2) ⇒ −𝑎1 𝑎 

0
=∝1+∝2. 

 
𝑎2 = 𝑎0(∝1∙∝2) ⇒ + 𝑎2 𝑎 

0
=∝1∙∝2. 

 

If n=3, we have a polynomial of degree 3 defined as follows: 

            𝑃 𝑥 = 𝑎0 𝑥
3 

+ 𝑎1𝑥2  
+ 𝑎2𝑥 + 𝑎3

= 𝑎0 𝑥−∝1  𝑥−∝2  𝑥−∝3 

= 𝑎0 𝑥2 − (∝
1
+∝2+∝3)𝑥2 + (∝1∝2+∝1∝3

+∝2∝3)𝑥−∝1∝2∝3 .  

And by equal coefficients powers of x we have: 

−𝑎1 𝑎 
0

=∝1+∝2+∝3.    

𝑎2 𝑎 
0

=∝1∝2+∝1∝3+∝2∝3.  

−𝑎3 𝑎 
0

=∝1∙∝2∙∝3. 

Thus, in general for any n roots of a polynomial of degree n we get: 
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 ∝𝑖= − 𝑎1 𝑎0  

             ∝𝑖∝𝑗= + 𝑎2 𝑎0        𝑖 ≠ 𝑗 

              ∝𝑖∝𝑗∝𝑘= − 𝑎3 𝑎0        𝑖 ≠ 𝑗 ≠ 𝑘 

                ∝𝑖∝𝑗∝𝑘∝𝑙= + 𝑎4 𝑎0        𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑙 

 

                                              

⋮
⋮
⋮
 

                                                ∝1∝2∝3 … ∝𝑛=  −1 𝑛 𝑎𝑛 𝑎0  . 
 

Example 2.55:   

(1) Find the roots of an equation  
𝑃 𝑥 =  6 𝑥

3 −18𝑥2
 
+ 24𝑥−12 = 0 

when the result of multiplication of  two roots of them  is equal 2.  

Solution: 
𝑎0 = 6, 𝑎1 = −18, 𝑎2 = 24, 𝑎3 = −12.  

 

∝1+∝2+∝3= −𝑎1 𝑎 
0

= −(−18) 6 = 3………. (1)    

∝1∝2+∝1∝3+∝2∝3 = 𝑎2 𝑎 
0

= 24 6 = 4………(2)  

∝1∙∝2∙∝3= −𝑎3 𝑎 
0

= −(−12) 6 = 2………. .… 3  

From (3)  ∝1∙∝2∙∝3= 2 , but ∝1∙∝2= 2. So, ∝3= 1. 
From (1)  we have 

∝1+∝2+∝3= 3 ⇒∝1+∝2= 3−1 = 2 ⇒∝1= 2−∝2. 

 

So, by (2) we have  
 2−∝2 ∝2+ 2−∝2 . 1 +∝2= 4 ⇒∝2

2−2 ∝2+ 2 = 0. 

∝2=
+2 ± 4− 8

2
=

2 ± 2𝑖

2
= 1 ± 𝑖. 

Therefore, the roots are    1,1+i, 1-i. 

 

(2) Find the roots of an equation  
𝑃 𝑥 =   𝑥

3 −6𝑥2
 
+ 11𝑥− 6 = 0. 

Solution:   
𝑎0 = 1, 𝑎1 = −6, 𝑎2 = 11, 𝑎3 = −6. 

Thus, if  ∝1, ∝2, ∝3 are roots of  P(x), then  
∝1∙∝2∙∝3= (−1)𝑛 𝑎3 𝑎 

0
= (−1)3(−6) 1 = 6 

 

 

Thus, the possible integer roots of  P(x) are  ±1, ±2, ±3 and ±6. 
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P (1)= 0 is a root of  P (x); 

P (-1) ≠ 0 is  not a root of  P (x); 

P (2)= 0 is a root of  P (x); 

P (-2) ≠ 0 is not a root of  P (x); 

P (3)= 0 is a root of  P (x); 

P (-3) ≠ 0 is not a root of  P (x); 

P (6) ≠0 is not a root of  P (x); 

P(-6) ≠ 0 is not  a root of  P (x). 

Therefore, 𝑥 = 1,𝑥 = 2, 𝑥 = 3 are roots of  P(x). 

 

(3) If  ∝1, ∝2, ∝3,∝4  are roots of  the following equation 
𝑃 𝑥 =   𝑥

4 −4𝑥3 + 3𝑥2
 
+ 𝑥− 1 = 0. 

Find ( ∝1
2+ ∝2

2+∝3
2+ ∝4

2)3  . 

Solution:  
𝑎0 = 1, 𝑎1 = −4, 𝑎2 = 3, 𝑎3 = 1, 𝑎4 = −1. 

So,  ∝1+ ∝2+∝3+ ∝4= −𝑎1 𝑎 
0

= − (−4) 1 = 4 

  and  

  ∝1.∝2+∝1.∝3+∝1.∝4+∝2.∝3+∝2.∝4+∝3.∝4 

= 𝑎2 𝑎 
0

= 3 1 = 3. 

But  

( ∝1 + ∝2 +∝3 + ∝4 )
2

= (( ∝1 + ∝2) + (∝3 + ∝4) )2 

= ( ∝1 + ∝2)2 + 2( ∝1 + ∝2) ( ∝3 + ∝4) + ( ∝3 + ∝4)2 

  =∝1
2+ ∝2

2+∝3
2+ ∝4

2+ 2 ∝1.∝2+∝1.∝3+∝1.∝4+∝2.∝3+∝2.∝4+
∝3. ∝4 

⇒ 16 =∝1
2+ ∝2

2+∝3
2+ ∝4

2+ (2.3) 

⇒ 10 =∝1
2+ ∝2

2+∝3
2+ ∝4

2⇒ (10)3 = (∝1
2+ ∝2

2+∝3
2+ ∝4

2)3

= 1000. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 


