
Lecture 14
Chapter 19

Ideal Gas Law and
Kinetic Theory

 of Gases

Chapter 20
Entropy and the Second

Law of Thermodynamics

Now we to look at temperature,
pressure, and internal energy in
terms of the motion of molecules
and atoms? Relate to the 1st Law
of Thermodynamics



•Thermal expansion cracking the nut. (Strength of electrical forces)

•Jug O' Air (Inflate with bike pump and watch temp. rise)
p/T = constant

• Boiling by Cooling (Ice on beaker)

• Boiling by Reducing Pressure(Vacuum in Bell jar)

• Dipping Duck Toy
wet head cools as water evaporates off it -
pressure drops inside head
contained pressure pushes water up tube
when center of gravity is exceeded head tips
exposes bottom of tube then pressure equalized

•Leslie cube and the laser themometer.



• Pressure reduction due to cooling inside coke can crushing
   it when placed in water. pV=nRT, p/T=constant



Thermal effects using liquid nitrogen again.
 For air in the balloon  at room temp

At room temp we have pV=nRT and  T=273K
then dip it liquid nitrogen
 p’V’=nRT   with T= 78K,
 p’V’ should be smaller by a factor of 273/78=3.5
compared to pV

So why does the balloon get a lot smaller?

Since air boils at 90 K, air is liquid at 78 K and is no longer a 
gas so the ideal gas law does not apply.)  



Avogadro’s Number

How many molecules are there in a cubic meter of air at STP?

First, find out how much mass there is.

The mass is the density times the volume.

m = 1.2 kg/m3 x 1 m3  = 1.2 kg. (or 2.5 lbs)

Now find the number of moles in the cubic meter and multiply by
Avogadro’s number

1 m



Avogadro’s Number

NA=6.02 x 1023   atoms or molecules in one mole of any gas.
             One mole is the molecular weight in grams. It is

   also called the molar mass.

Then the number of moles in 1.2 kg is

    1 mole of air contains 29 gms

n = 1200gm ×
1

29gm / 1mol
= 41.3mol

N = 41.3NA = 2.49 ×10
25

Advogado’s number is also related to the Ideal Gas law.

 
Also 1 / NA = 1.66 ×10−24 gms Mass of the proton=1.67 ×10-24gms

Then the number of molecules or atoms is



Ideal Gases
Experiment shows that 1 mole of any gas, such as helium, air,
hydrogen, etc at the same volume and temperature has almost the 
same pressure. At low densities the pressures become even closer 
and obey the Ideal Gas Law:

p = nRT /V

 

V = volume in units of m3

n = number of moles
T = temperature in units of K
R = 8.31J/moles ⋅ K
p = pressure(absolute) in  units of Pa(N/m2 )

Called the gas constant



Ideal Gas Law in terms of Boltzman Constant

Lets use the ideal gas law to understand the 1st law of Thermodynamics

p = nRT /V

p =
NkT
V − b

− ( a
V
)2

R = NAk
nR = nNAk = Nk
k = 1.38 ×10-23J / K = Boltzman's constant

At high gas densities you must add the Van der Waal corrections
where a and b are constants. 

pV = NkT

ΔEint = Q −W



Work done by an ideal gas

� 

W = Fdx∫
W = F

A∫ Adx

W = pdv∫

Always keep this picture in
your head. Memorize it!!

ΔEint = Q −W



pV diagram
For an isothermal process or constant temperature.

                                                                           This is an equation of a hyperbola.

pV = nRT

p =
nRT
V

=
constant

V



What is the work done by an ideal gas when
the temperature is constant?

� 

W = pdV
Vi

V f∫
W = nRT

V
dV

Vi

V f∫

For constant temperature.

W = nRT
dV
VVi

Vf∫ = nRT lnV[ ]Vi
Vf

constant

pV = nRT

W = nRT ln
Vf

Vi



What is the work done by an ideal gas when
the temperature is constant?

Isothermal expansion          Vf > Vi          W > 0        ln is positive
Isothermal compression      Vf < Vi      W < 0        ln is negative
Constant volume                 Vf = Vi         W = 0      ln 1=0

pV = nRT
W = nRT ln

Vf

Vi

ΔEint = Q −W



W = nR
T
V
dV

Vi

Vf∫

For a constant volume process: W = 0

For a constant pressure process W = p(Vf −Vi )

For an ideal gas undergoing any reversible
thermodynamic process.

Four situations where the work done by an ideal gas is very clear.

W = nRT ln
Vf

Vi
For a constant temperature process

W = pdV
Vi

Vf∫



Sample problem 19-2

One mole of oxygen expands from 12
to 19 liters at constant temperature of
310 K. What is the work done?

� 

W = nRT ln
Vf

Vi

W = The area under the curve.

n = 1mol
R = 8.31J / mol ⋅K
T = 310K
Vi = 12l
Vf = 19l

W = (1)(8.31)(310)ln(19
12
)

= 1180J

(Note volume
units cancel)

ΔEint = Q −W



What’s Next

ΔEint = Q −W

W = nR
T
V
dV

Vi

Vf∫

We know how to find W. If  we can find the change in internal
energy, then we know Q. Resort to  a microscopic or kinetic
theory of a gas.



What is the connection between
pressure and speed of molecules?

We want to find the x component of
force per unit area

ΔPx = (−mvx ) − (mvx ) = −2mvx
Δt = 2L / vx

Fx = −
ΔPx
Δt

=
2mvx
2L / vx

=
mvx

2

L
p =

Fx
L2

=
mvx

2 / L
L2

= m(vx
2 ) / L3 due to one

 molecule

Kinetic theory model of a gas: Find p due to
one molecule first and then sum them up

ΔP = Pf − Pi

Fx =
ΔPx
Δt

x component of momentum given to wall is -  ΔPx



p =
Fx
L2

=
mvx

2 / L
L2

= m(vx
2 ) / L3

p =
m(v1x

2 + v2x
2 + ...)

L3
=
mnNA (vx

2 )avg
L3

Due to all molecules

p =
nM (vx

2 )avg
V

where M is the molar mass and V is L3

Now find the average molecular velocity.

Find pressure due 
to all molecules

Due to one molecule



What is the root mean square of the velocity
of the Molecules?

� 

vavg
2 = (vx

2)avg + (vy
2)avg + (vz

2)avg

� 

vrms = (v 2 )avg

p =
nMvrms

2

3V

p =
nM (vx

2 )avg
V

and

� 

(vx
2)avg = (vy

2)avg = (vz
2)avg

� 

vavg
2 = 3(vx

2)avg

� 

(vx
2)avg =

vavg
2

3
then 

p =
nM (v2 )avg
3V

vrms
2 =

3pV
nM

=
3nRT
nM

=
3RT
M

� 

vrms = 3RT
M

Define the root mean square of v

pV = nRT



Average Molecular speeds at 300 K

  Gas             m/s
Hydrogen    1920
Helium        1370
Water vapor  645
Nitrogen        517
Oxygen         483

What is the kinetic energy of the molecules?

Notice that the speed decreases with mass

� 

vrms = 3RT
M

� 

vrms = 3(8.31)(300)
0.002

=1933

� 

vrms = 3(8.31)(300)
0.032

= 483

R = 8.31J / mol
T = 300K
M = 0.002kg



Average Kinetic Energy of the Molecule

� 

Kavg = 1
2mvavg

2 = 1
2mvrms

2

� 

vrms = 3RT
M

� 

Kavg = 1
2m

3RT
M

= 3RT
2NA

� 

Kavg = 3
2 kT

All ideal gas molecules have the same translational energy at a given T
independent of their mass. Remarkable result.

Kavg = (1.5)(1.38 ×10−23J / K )∗ (293K ) = 6.07 ×10−22 J
at room temperature.



Mean Free Path

mean free path = average distance 
molecules travel in between collision

� 

λ = 1
2πd2N /V

d is the diameter of the molecule

N/V is the density of molecules



f = speed of the molecule/mean free path = v /λ

Problem. Suppose we have a oxygen molecule at 300 K at p =1 atm 
with a molecular diameter of d= 290 pm. What is λ,v,  and f where
f is defined as the frequency of collisions in an ideal gas?

� 

λ = 1
2πd2N /V

� 

λ = kT
2πd2p

=
1.38x10−23J / K(300K )

1.414(3.14)(290x10−12m)2 (1.01x105Pa)

pV = NkT
N
V

=
p
kT

λ = 1.1×10−7m = 380d

Find λ



What is v, the speed of a molecule in an ideal gas?

f = vrms  / λ

vrms =
3(8.31)(300)
0.032

= 483m / s

f =
483

1.1×10−7 = 4.38 ×10
9 / s

t =
1
f
=

1
4.38 ×109 / s

= 2.2 ×10−9 = 2.2ns

 What is the time between collisions?

Use the rms speed.

� 

vrms = 3RT
M

What is f, the frequency of collision?



Maxwell’s speed
distribution law:
Explains boiling.

 

� 

P(v) = 4π ( M
2πRT

)
3
2v 2e−

Mv2
RT

� 

P(v)dv =1
0

∞∫
Area under red or green curve = 1

Note there are three velocities

� 

vavg = vP(v)
0

∞∫

� 

vrms = (v 2)avg = v 2P(v)dv
0

∞∫
vp is the most probable speed

It is the faster moving molecules in the tail
of the distribution that escape from the
surface of a water.

vp

vp



Want to relate ΔEint to the kinetic energy of
the atoms of the gas.

• Assume we have a monoatomic gas.
• Only have translational energy. 
• No rotational energy.
• No vibrational energy.
• Neglect binding energy of electrons.
• No changes in the nucleus.

ΔEint = sum of the average translational energies of all the atoms.

Kavg = 3
2 nNAkTΔEint = Kavg and from kinetic theory. 

ΔEint =
3
2
nNAkT =

3
2
nRTTherefore,



From the heat we can calculate the specific heat
for various processes. For example,

• We know ΔEint

• We know W

• We have

•We now can get the heat Q

ΔEint = Q −W



Lets calculate the  specific heat, CV
of an ideal gas at constant volume

The internal energy of an ideal monatomic gas like
helium and neon is given by the kinetic energy

and only depends on temperature.

The first law of thermo:
at constant volume gives ΔEint = Q   since W=0

We know from experiment in the figure at the
right that Q = n CVΔT, where CV is called the 
molar specific heat at constant volume

Eint = (
3
2
)nRT

ΔEint = Q −W



Calculate CV

Using Q= ΔEint

But                                                            from aboveΔEint = (
3
2
)nRΔT

nCVΔT =
3
2
nRΔT

CV =
3
2
R = 12.5J / mol ⋅K



Cv for different gases
The internal energy for any ideal gas can be written 
as long as the correct CV is used.

The internal energy and change in internal energy only depends
on the temperature change. That is it only depends on the endpoints
and not the path. This confirms what we said earlier about the first law.
Also note that Q and W depend on the path but the difference Q-W
is path independent. See Fig 19-9 in text.

Eint = nCVT

3/2R           12.5 J/mole.K
Helium gas 12.5 exp 
Argon         12.6 exp



Specific Heat at
 Constant Pressure

Now Cp will be greater because the
energy must now do work as well as
raise the temperature.

Q = nCpΔT
ΔEint = Q −W
W = pΔV
pV = nRT
ΔEint = nCVΔT
nCVΔT = nCpΔT − nRΔT
CV = Cp − R

Another fantastic relation



Adiabatic Expansion of an Ideal Gas: Q = 0

We want to show 

for Q = 0 thermodynamic processes

pV γ = constant

γ =
Cp

CV

Note we do not let any heat get exchanged between system and environment



Adiabatic Expansion of an Ideal Gas: Q = 0

� 

dE int = −W = −pdV
dE int = nCVdT
−pdV = nCVdT
ndT = −pdV /CV

From the ideal gas law  

� 

pdV +Vdp = nRdT = n(CP −CV )dT
pdV +Vdp = (CP −CV )ndT = −(CP −CV )pdV /CV

pdV +Vdp = −(CP

CV

−1)pdV

� 

dP
P

+ CP

CV

dV
V

= 0

ΔEint = Q −W
Q = 0

pV = nRT



Adiabatic Expansion of an Ideal Gas: Q = 0

dP
P∫ + γ dV

V∫ = 0

lnP + γ lnV = constant
lnPV γ = constant

γ =
Cp

CV

PV γ = constant



PROBLEM 20-58E

Show that the speed of sound in a ideal gas  for an adiabatic process is

� 

vs = γRT
M

Recall

� 

vs = B
ρ B = −V

dp
dV

dp
dV

= −γ p
V

B = γ p

vs =
γ p
ρ

=
γ nRT /V

ρ
=

γ RT
M

For helium at 300 K, the molecular speed is vrms= 1370 m/s and. Then
the predicted speed of sound in helium is 1021 m/s. The  measured
value is 965m/s

Also 

� 

vs = γRT
M

= γ
3
3RT
M

= γ
3
vrms γ =

Cp

CV

=
5
3

pV γ = constant



Problem 20-61P
One mole of an ideal monatomic gas
traverses the cycle shown in the figure.

(a) Find Q, ΔΕint , and W for each process.

1         2            constant volume

ΔEint = nCVΔT = n
3
2
RΔT = (1mol)(1.5)(8.314J / mol ⋅K )(600 − 300)K

ΔEint = Q = 3.74 ×103J

W = 0

ΔEint = Q



2----3     Q = 0

ΔEint = nCVΔT = n
3
2
RΔT = (1mol)(1.5)(8.314J / mol ⋅K )(455 − 600)K

W = Q − ΔEint = 1.81×10
3J

ΔEint = −1.81×103J



3           1 constant pressure

Q = nCpΔT = n
5
2
RΔT = (1mol)(2.5)(8.314J / mol ⋅K )(300 − 455)K

ΔEint = nCVΔT = n
3
2
RΔT = (1.5)(8.314)(300 − 455) = −1.93×103J

W = Q − Eint = (−3.22) − (−1.93)[ ]×103J = −1.29 ×103J

Cp = Cv + R =
3
2
R + R =

5
2
R

Q = −3.22 ×103J



(b) Find the pressure and volume at points
2 and 3.
The pressure at point 1 is
1 atm = 1.013 x 105 Pa.

At point 1 the volume is determined from

At point 2, V2 =V1 =

At point 3, P3= P1= 1.013 x 105 Pa

V1 =
nRT
P1

=
(1)(8.314)(300)
1.013×105

= 2.46 ×10−2m3

p2 =
nRT2
V2

=
(1)(8.314)(600)
2.46 ×10−2 = 2.02 ×105Pa

V3 =
nRT3
P3

=
(1)(8.314)(455)
1.103×105

= 3.43×10−2m3

2.46 ×10−2m3



Equipartition Theroem
Equipartition Theorem: Each molecule has 1/2kT 
of energy associated with each independent 
degree of freedom

All molecules have three ways to move 
in translation vx,vy,vz 

Diatomic molecules also have two
rotational degrees of freedom as well

Polyatomic molecules have three rotational
degrees of freedom as well.

Monatomic molecules have 0 rotational 
degrees of freedom

How does this effect the specific heats?



Specific heats including rotational motion

Let f be the number of degrees of freedom

CV = (3/2) R    for monatomic gas       (f=3)
CV= (5/2) R     for diatomic gas           (f=5)
CV = (3) R       for polyatomic gas       (f=6)

CP = CV + R

Eint =
f
2
kt =

f
2
nRT



CV for a diatomic gas as a function of T
Below 80 K only
translational modes can be
excited

Quantum mechanics is required to explain why the rotational and
oscillatory modes are frozen out at lower temperatures. Oscillatory or
vibrational modes give 2 more degrees of freedom.

Above 80 K rotational modes
begin to get excited

Above 1000 oscillatory modes
 begin to get excited.

At 3200 K the molecule breaks
 up into two atoms



What is Entropy S? Two
equivalent definitions

• It is  a measure of a system’s energy gained or lost
as heat per unit temperature.

• It is also a measure of the ways the atoms can be
arranged to make up the system. It is said to be a
measure of the disorder of a system.� 

ΔS = S f − Si = dQ
Ti

f

∫

S = k ln W
ΔS = k ln Wf/Wi



A system tends to move in the
direction where entropy increases
• For an irreversible process the entropy

always increases.  ΔS > 0

• For a reversible process it can be 0 or
increase. ΔS ≥ 0



Heat Flow Direction

• Why does heat flow from hot to cold instead of vice
versa? Because the entropy increases.

• What is this property that controls direction?

T2 T1

T2 > T1

� 

ΔS = S f − Si = dQ
Ti

f

∫



The statistical nature of entropy

• Black beans on the right
• White beans on the left
• Add some energy by shaking them up and they

mix
• They never will go back together even though

energy of conservation is not violated.
• Again what controls the direction?



• However, the above formula can only be used to calculate
the entropy change if the process is reversible..

� 

ΔS = S f − Si = dQ
Ti

f

∫

•   Assume that entropy is a state property like pressure and volume
 and only depends on the initial and final state, but not on how it got
 there . Then the change in entropy is defined as:

Note that units are Joule per kelvin and the sign is the same as Q
since T > 0

•  To find the entropy for an irreversible process and since state
   functions only depend on the end points, the trick is to replace
   the irreversible one with a reversible one that has the same 
  end points. Consider the isothermal free expansion of an ideal gas.



Calculate the Change in
Entropy for an
Isothermal Irreversible
Free Expansion of  an
Ideal Gas. No change in
temperature.



ΔS = Sf − Si =
dQ
T

=
i

f

∫
1
T

dQ
i

f

∫

How do we evaluate S or the change in S?

ΔS =
Q
T

To keep the temperature of the gas constant, heat had to be
added to the gas while the volume was expanding or else 
it would have cooled. Since heat was added, Q is +, 
Hence, the entropy change was + or ΔS > 0

The change in entropy for a free expansion is also 
given by the above formula since the temperature doesn’t 
change as well.

Example:Isothemal Reversible Expansion



Isothermal expansion of a gas
ΔS =

Q
T

� 

ΔE int = nCVΔT = 0

� 

Q =W

� 

W = nRT ln
Vf

Vi

ΔS = nR ln
Vf

Vi

Isothermal process

From the 1st law

W = pdV
i

f

∫
pV = nRT

W = nRT
dV
Vi

f

∫

ΔS =
W
T



Example:  Four moles of an ideal gas undergo a reversible
isothermal expansion from volume V1 to volume V2 = 2V1 at
temperature T = 400K.

W = pdV = nRT
V2

V2

∫
dV
VV1

V2

∫ = nRT lnV2
V1

W = nRT ln 2V1
V1

= nRT ln2 = (4mol)(8.31J / molK )(400K )ln2 = 9.22x103J

a) Find the work done by the gas.

b) Find the entropy change of the gas?

c) Find the entropy change if the process is adiabatic
instead of isothermal

a) Find the work done.



b) Find the entropy change of the gas.

ΔS =
W
T

=
9.22x103J
400K

= 23.1J / K

We just showed that 

c) If the expansion is reversible and adiabatic instead of
 isothermal, find the entropy change of the gas.

 

� 

ΔS = 0
� 

ΔS = S f − Si = dQ
Ti

f

∫

ΔQ = 0

ΔS =
W
T



For an ideal gas in  any reversible process where
the temperature and volume may change, the entropy

change is given by the following:

� 

ΔS = S f − Si = dQ
Ti

f

∫

� 

ΔS = nR ln
Vf

Vi

+ nCV ln
Tf
Ti

This holds for all reversible processes for an ideal gas.

dEint = dQ − dW

dQ = dEint + dW = nCVdT + pdV
dQ
T

= nR
dV
V

+ nCV
dT
T



Summary

ΔS = nR ln
Vf

Vi
= nR ln2 = k ln2

For isothermal expansion of  a gas

 where the final volume doubles 

 the initial volume, we have the

 change entropy equal to:

ΔS =
dQ
Ti

f

∫



Statistical View of Entropy
Boltzman Entropy Equation

S = k ln W

Now find the change in entropy from

The above equation



An insulated box containing 6 molecules

n1=4 n2=2

n1=3 n1=3



N=6

0
17
33
50
67
83
100

Percent
age

0160VII
2.47651VI
3.741542V
4.132033IV
3.741524III
2.47615II
0106I

      S
10-23J/K

Wn2n1Label

W =
N !

n1!n2 !
S = k ln W N!=6x5x4x3x2x1



W =
N !

n1!n2 !

W =
6!
4!2!

=
6x5x4x3x2x1
4x3x2x1x2x1

=
6x5
2

= 15



This shows the number of microstates
available for each configuration

N=6 molecules
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N=1022 molecules



Statistical View of Entropy
Starting from the Boltzman equation S = k ln W

show the same result.

Wi ==
N !
N !0!

= 1

Wf =
N !

(N
2
)!(N
2
)!

N 0

N/2 N/2

Initial system

Final system

 

ΔS = k lnWf = k ln(
N !

(N
2
)!(N
2
)!
)  k ln2

0
ΔS = k lnWf − k lnWi

Same result as that obtained
 from the gas law. 



Use Stirling formula

ΔS = k lnWf = k ln(
N !

(N
2
)!(N
2
)!
)

ln( N !

(N
2
)!(N
2
)!
) = ln(N !) − 2 ln((N

2
)!) = ln2

ΔS = k ln2 = nR ln2

lnN !≈ N ln(N ) − N For very large N



2nd Law of Thermodynamics
ΔS ≥ 0

If a process occurs in a closed system, the
entropy of the system increases for irreversible
processes and is constant for reversible
processes.

Entropy is important in the discussion
ofEngines and efficiency and Refrigerators,etc.

Stop here.



Grading for Phys 631

Homework (100 problems) 30%
Quizzes (3)           35%
Final  (1)               29%
Spreadsheet             1%

Four homework assignments scheduled

Fall Homework 1 11:59 PM            Sunday August 12
Fall Homework 2 11:59 PM    Sunday August 26
Fall Homework 3 11:59 PM  Sunday September 9
Fall Homework 4 11:50 PM Sunday September 23

Final Exam 9:00 AM Sept 24 - Sept 26 7:00 PM
All Multiple Choice 60 Questions
Proctored



Classes 2007-2008

Fall Registration Aug 15

• Phys 605W How things Work I
• Phys 609W Galileo & Einstein

Spring

• Phys 606W How Things Work II
• Phys 641W Physics pedagogy

Summer 2008

• Phys 632 E/M Lecture
• Phys 635 E/M Lab
• Phys 633W Modern Physics Online



Reminders
•  Check-out on August 2 11:00 AM

• Turn keys into Conference Services at check-out
or you will pay a fine.

•  Return any books to the Library

• Return Quiz 3

• Thank the DEMO techs fo a job well done -Roger
and Nicolai



The Breaking Broomstick Demo
“Experiment to demonstrate Inertia”

First published in 1881

Dramatic-Why does the stick break so violently and leave the glass intact?



Breaking Broomstick Demo
vLE

vCM

2FΔt

(1)

(2)

(3) 

vCM =
FΔt
m

Iω =
L
2
(FΔt) − τΔt[ ]

Iω =
L
2
mvCM − τΔt[ ]

MASS:
LENGTH:

m
L

Resistive torque

vLE = vCM −
L
2
ω



Broomstick Breaking Cont.
vLE

vCM

2FΔt MASS:
LENGTH:

m

Resistive torque

LEFT SIDE RIGHT SIDE

vLE = vCM −
L
2
(L
2

mvCM
1
12mL

2
) − −

τΔt
1
12mL

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

vLE = vCM − 3vCM +
6τΔt
mL

vLE = −2vCM +
6τΔt
mL

vLE = −2vCM

vRE = vCM +
L
2
ω

vRE = vCM + 3vCM

vRE = 4vCM

vRE = 4vCM −
6τΔt
mL



Apparatus
-4 ft long, 7/8in diameter white pine, cedar, or hickory dowel rod or broomstick

-Stick pins in each end; cut off heads

-Support each pin with a wine glass, coke can, block of wood, etc.

-Striking stick: Steel 1/2” in diameter and 2ft long

-Mark the halfway point of stick so you know where to strike it

-Use a hacksaw to etch it around the circumference; avoid stick fracturing due to 
 other weakness.

-Raise striking stick and hit the center as hard as you can; follow through

Need clearance


