

Restriction enzymes

The restriction enzymes cut DNA at defined sites,

- ✤ represent one of the most important groups of enzymes for manipulation of DNA
- They work as a protective mechanism known as the restriction- modification system

Hydrolyse or breakdown any exogenous DNA enters the cells.

The host DNA is protected from these enzymes by methylation of specific

bases in the restriction site. Therefore, These enzymes cut non-methylated DNA (exogenous)

Bacteria found to be resistant to some bacteriophage (bacterial virus). Restriction enzymes would cut viral DNA, not its own genome.

Types of restriction enzymes

1. Exonucleases :catalyses hydrolysis of terminal nucleotides from the end of DNA or RNA

Types of restriction endonucleases

	Cleavage site	Location of methylase	Examples
Type I	Random, Recognition site is of 15bp in length Methylate A* in rec site	Endonuclease and methylase located on a single multifunctional protein molecule	EcoK I EcoA I CfrA I
	Cleavage site is around 1000bp away from recognition site	adenocyle methionine as cofactor	
Type II	Specific palindromic sequences	Simple enzymes of single	EcoR I
	Within the recognition site	polypeptide, Endonuclease and methylase are separate entities	BamH I
<u> </u>		Very stable and require only Mg+ + as cofactor	Hind III
Type III	Random, non-palindromic	Endonuclease and methylase	EcoP I
O)	sequences	located on a single protein molecule	Hinf III
	24-26 bp downstream of the recognition site	Require Mg++ & ATP as cofactor	EcoP15 I

Restriction endonucleases nomenclature

Restriction enzyme nomenclature

Why the funny names?

- EcoRI Escherichia coli strain R, 1st enzyme
- BamHI Bacillus amyloliquefaciens strain H, 1st enzyme
- DpnI Diplococcus pneumoniae, 1st enzyme
- HindIII Haemophilus influenzae, strain D, 3rd enzyme
- Bg/II Bacillus globigii, 2nd enzyme
- Pstl Providencia stuartii 164, 1st enzyme
- Sau3AI Staphylococcus aureus strain 3A, 1st enzyme
- Kpnl Klebsiella pneumoniae, 1st enzyme

Recognition sequence

Palindrome

Hpall and Msp1 isoschizomers

Mspl	Identify 5-mC; used with Hpall	5′ C ^T CGG3′ 3′ GGC <u>.</u> C5′
Hpall	Identify 5-mC; used with Mspl	5′ C CGG3′ 3′ GGC C5′

Restriction mapping

	DNA size marker	<i>Eco</i> RI	Bam HI	EcoRI + BamHI
10 kb 6 kb 4 kb	\equiv	_	—	=
2 kb	—	_		—
1 kb		_		