

الجـامـــة المـــتنصريـة / كليـة العلـوم
قســم الفيـزــــاء

Al-Mustansiriyah University
College of Science - Physics Department

Tutorial

Modern Optics: Maxwell's Equations

Edited by:

Prof. Ali .A. Al-Zuky
Seja Faez
Ibrahim Abbas
Aliaa Abdulhusain
Hadeel Thamer
Mohammed Ali
Hamza Abdul-Kadhim

Dr. Haidar Jawad Mohamad
Duaa Ali Taban
Hassanen Abdulhusain
Hassan Jaber
Ali Mohammed
Athraa Naji

Maxwell Equations:

$\nabla . \mathbf{D}=\rho$
Gauss Law for electric field.
$\nabla . B=0$
Gauss Law for magnetic field.
$\nabla \times \mathbf{E}=-\partial \mathbf{B} / \partial \mathrm{t} \quad$ Faraday's Law.
$\nabla \times \mathbf{H}=\mathbf{J}+\partial \mathbf{D} / \partial \mathrm{t} \quad$ Ampere's Law.
Where:
D: electric displacement $\left(\mathrm{c} / \mathrm{m}^{2}\right)$, E: electric field (V/m),
B: magnetic field (T or V. $\mathrm{s} / \mathrm{m}^{2}$),
ρ : Volume charge density $\left(\mathrm{c} / \mathrm{m}^{3}\right)$,
Maxwell's equations in free space are:
$\nabla . \mathrm{D}=0$,
$\nabla . \mathbf{B}=0$
$\nabla \times \mathbf{E}=-\partial \mathbf{B} / \partial \mathrm{t}$
$\nabla \times \mathbf{H}=-\partial \mathbf{D} / \partial \mathrm{t}$
Where: $\mathbf{J}=\sigma \mathbf{E}$
$\mathbf{D}=\varepsilon \mathbf{E}=\varepsilon_{0} \mathrm{n}^{2} \mathbf{E}$
$\mathrm{n}=\sqrt{\frac{\epsilon}{\epsilon_{0}}}=\sqrt{\epsilon_{r}}$
$\mathbf{B}=\mu_{0} \mathbf{H}$
σ : conductivity of medium, ε : electric permittivity $\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right), \mu_{0}$: magnetic permeability $\left(4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)$, n: reflective index of medium.

Electromagnetic Waves:

- General wave equation
$\nabla \times \mathbf{E}=-\mu \partial \mathbf{H} / \partial \mathrm{t}$
$\nabla \times \mathbf{H}=\sigma \mathbf{E} \mathbf{J}+\varepsilon \partial \mathbf{E} / \partial \mathrm{t}$

By take $(\nabla \times)$ for any of the two equations above:
$\nabla \times \nabla \times \mathbf{E}=-\mu \nabla \times(\partial \mathbf{H} / \partial \mathrm{t})=-\mu \partial / \partial \mathrm{t}(\nabla \times \mathbf{H})=\nabla(\nabla . \mathbf{E})-\nabla^{2} \mathbf{E}$
$\nabla(\nabla \cdot \mathbf{E})-\nabla^{2} \mathbf{E}=-\mu \partial \mathbf{E} / \partial \mathrm{t}-\mu \varepsilon \partial^{2} \mathbf{E} / \partial \mathrm{t}^{2}$

For a free source media,
$\nabla \cdot \mathbf{E}=\nabla \cdot(\mathbf{D} / \varepsilon)=1 / \varepsilon(\nabla \cdot \mathbf{D})=0$

Thus:
$\nabla^{\mathbf{2}} \mathbf{E}-\mu \sigma \partial \mathbf{E} / \partial \mathrm{t}-\left(1 / \mathrm{v}^{2}\right) \partial^{2} \mathbf{E} / \partial \mathrm{t}^{2}=0 \quad$ Wave eq. for free source.
Where: $v=1 / \sqrt{\mu \epsilon}$
Solve the wave eq. to obtain electric field equation as a function of space and time.
$\mathbf{E}(x, y, z, t)=\mathbf{E}(x, y, z,) e^{j \omega t}$
$\mathbf{E}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=\mathbf{E}(\mathrm{x}, \mathrm{y}, \mathrm{z}),\{\cos \omega \mathrm{t}$ and $\sin \omega \mathrm{t}\}$
To drive the wave equation $2^{\text {nd }}$ time:
$\nabla^{2} \mathbf{E}-\gamma^{2} \mathbf{E}=0$

Where: $\gamma=$ Propagation constant for EM wave
$\gamma=|\gamma| c^{i \Psi}=\alpha+i \beta=\left(j \omega \mu \sigma-\omega^{2} \varepsilon \mu\right)^{1 / 2} ; j=\sqrt{-1}$
$\Psi=\pi / 2-(1 / 2) \tan ^{-1}(\sigma / \omega \varepsilon)$
$\alpha=$ attenuation constant $=|\alpha| \cos \Psi(n / m)$
$K=$ Phase constant
$\beta=|\alpha| \sin \Psi(\mathrm{rad} / \mathrm{m})$.

The same work to obtain wave equation for magnetic field
$\nabla^{\mathbf{2}} \mathbf{H}-\gamma^{2} \mathbf{H}=0$

Electromagnetic Waves in Dielectric Medium:

By assuming homogenous free source medium ($\nabla \cdot \mathbf{E}=0$), Maxwell's equations become:
$\nabla \times E=-j \omega \mu H$
$\nabla \times \mathrm{H}=\mathrm{j} \omega \varepsilon \mathrm{E}$
Multiply ($\nabla \times$) both side of eq. 1
$\nabla^{\mathbf{2}} \mathbf{E}-\gamma^{2} \mathbf{E}=0$
Where: $\mathrm{K}=\omega \sqrt{\mu \epsilon}=$ Phase constant $(\mathrm{rad} / \mathrm{m})$.
$\nabla^{\mathbf{2}} \mathbf{E}=\mu \varepsilon \partial^{2} \mathbf{E} / \partial \mathrm{t}^{2}$
$\nabla^{2} \mathbf{B}=\mu \varepsilon \partial^{2} \mathbf{B} / \partial \mathrm{t}^{2}=1 / \mathrm{v}^{2} \partial^{2} \mathbf{E} / \partial \mathrm{t}^{2}$

Where: $\mathrm{v}=1 / \sqrt{\mu \epsilon}$
v : speed of wave (phase velocity), in vacuum the velocity $\mathrm{c}=2.99 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

Plan wave solution:

To find simple harmonic wave for dielectric, the electric field function as a function of time can be write as:
$E_{x}(z, t)=E_{a} e^{-j k z}+E_{b} e^{j k z}$

Or
$E_{x}(z, t)=E_{a} e^{j(\omega t-k z)}+E_{b} e^{j(\omega t+k z)}$
Where:
E_{a} and E_{b} amplitude constant.
a) For electric field as a function of time $z=0$
$\mathrm{E}_{\mathrm{x}}(0, \mathrm{t})=\mathrm{E}_{\mathrm{a}} \mathrm{e}^{\mathrm{j} \omega \mathrm{t}}$
b) For electric field as a function of space $t=0$
$\mathrm{E}_{\mathrm{x}}(\mathrm{z}, 0)=\mathrm{E}_{\mathrm{b}} \mathrm{e}^{-\mathrm{kz}}$
Where:

$$
\begin{aligned}
& \mathrm{K}=2 \pi / \lambda=\omega \sqrt{\mu \epsilon} \\
& \nu=1 / \sqrt{\mu \epsilon}(\mathrm{m} / \mathrm{s})
\end{aligned}
$$

c) For magnetic field
$\mathrm{H}_{\mathrm{y}}(\mathrm{z}, \mathrm{t})=\mathrm{H}_{\mathrm{a}} \mathrm{e}^{\mathrm{j}(\omega t-k z)}$
$\mathrm{H}_{\mathrm{a}}=\mathrm{E}_{\mathrm{a}} / \eta ; \eta=|\mathbf{E}| /|\mathbf{H}|$
$\eta=\mathrm{w} \mu / \mathrm{k}=\sqrt{\mu \epsilon}$
η : intrinsic impedance for medium
$\eta=120 \Omega=\eta_{0}=$ in vacuum (free space), $\eta_{0}=376.7 \Omega$
d) For magnetic field by $f(H z)$ in dielectric medium and $\sigma=0(\Omega m)^{-1}, \varepsilon(\mathrm{~F} / \mathrm{m})$ and $\mu(H / m)$.
$\lambda=1 / \mathrm{f} \sqrt{\mu \epsilon}, \mathrm{v}_{\mathrm{p}}=1 / \sqrt{\mu \epsilon}$
v : wave propagation velocity.

Problem 1: A light wave is traveling in a glass of refractive index ($\mathrm{n}=1.5$). If the amplitude of electric field is $(\mathrm{E}=100 \mathrm{~V} / \mathrm{m})$. What is the amplitude of magnetic field H?

Solution:

$$
|\mathbf{H}|=\mathrm{n}|\mathbf{E}| / \eta_{0}
$$

Where; $\eta_{0}=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}$
$\eta_{0}=\left(4 \pi \times 10^{-7}(\mathrm{H} / \mathrm{m}) / 8.85 \times 10^{-12}(\mathrm{f} / \mathrm{m})\right)^{1 / 2}=376.7 \Omega$
$|\mathbf{H}|=(1.5 \times 100) / 376.7=0.398 \quad \mathrm{~A} / \mathrm{m}$

Phase velocity $\left(\mathbf{v}_{\mathrm{p}}\right)$ and group velocity $\left(\mathbf{v}_{\mathrm{g}}\right)$:

a) Non-dispersive medium:

$$
\mathrm{K}=\omega \sqrt{\mu \epsilon}
$$

$$
\mathrm{v}_{\mathrm{p}}=1 / \sqrt{\mu \epsilon}
$$

$\mathrm{v}_{\mathrm{g}}=$ constant with frequency.
The relation between ω and β is shown in figure (1).

Figure (1): The relation between ω and β ($\beta=\mathrm{k}$) for non-dispersive medium.
b) Dispersive medium:

$$
\begin{aligned}
& \mathrm{K}=\xi \sqrt{\omega} \\
& \mathrm{v}_{\mathrm{p}}=\sqrt{\frac{\omega}{\xi}} \\
& \mathrm{v}_{\mathrm{g}}=2 \sqrt{\frac{\omega}{\xi}}
\end{aligned}
$$

The relation between ω and β is shown in figure (2).

Figure (2): The relation between ω and $\beta(\beta=\mathrm{k})$ for dispersive medium when $\xi=2$

Problem 2: By using the equation ($v_{p}=\frac{\omega}{k}, v_{g}=\frac{d \omega}{d k}$), prove equations:

$$
v_{g}=v_{p}+k \frac{d v_{p}}{d k}, v_{g}=v_{p}-\lambda \frac{d v_{p}}{d \lambda}
$$

Solution:

$\omega=2 \pi \mathrm{f}=(2 \pi / \lambda) \lambda \mathrm{f}=\mathrm{k} v_{p}$
$\frac{d \omega}{d k}=v_{g}=\frac{d\left(k v_{p}\right)}{d k}=v_{p}+k \frac{d v_{p}}{d k}$
$d k=d\left(\frac{2 \pi}{\lambda}\right)=\frac{-2 \pi}{\lambda^{2}} d \lambda$
$\frac{d \omega}{d k}=v_{g}=v_{p}+\left(\frac{2 \pi}{\lambda}\right) \frac{d v_{p}}{\frac{-2 \pi}{\lambda^{2}}}$
$v_{g}=v_{p}-\lambda \frac{d v_{p}}{d \lambda}$

Electromagnetic wave in terms of energy density, pointing vector,

 intensity, momentum, and radiation pressure1- Energy density in electric and magnetic field of free space is given by:
$U_{\boldsymbol{E}}=\frac{1}{2}(\boldsymbol{D} \cdot \boldsymbol{E})=\frac{1}{2} \epsilon_{\mathrm{o}} \boldsymbol{E}^{2}$
$\boldsymbol{U}_{\boldsymbol{B}}=\frac{1}{2}(\boldsymbol{B} . \boldsymbol{H})=\frac{1}{2} \frac{\boldsymbol{B}^{2}}{\mu_{\circ}}$
Since, $\mathbf{E}=\boldsymbol{C} \mathbf{B}=\frac{1}{\sqrt{\mu_{0} \epsilon_{\mathrm{o}}}} \boldsymbol{B}$
$\mathbf{U}_{\mathbf{E}}=\mathbf{U}_{\mathrm{B}}$
Therefore; the total energy density $U=\epsilon_{0} \boldsymbol{E}^{2}=\frac{\boldsymbol{B}^{2}}{\mu_{0}}=\sqrt{\frac{\epsilon_{0}}{\mu_{0}}} \boldsymbol{E} \boldsymbol{B}\left(\mathrm{~J} / \mathrm{m}^{3}\right)$

2- Poynting Vector (\boldsymbol{S})

Poynting vector represents the directional energy flux density (the rate of energy transfer per unit area) of an electromagnetic field. Poynting vector (\boldsymbol{S}) defined as the cross product of the electric field and magnetic field
$\boldsymbol{S}=\frac{1}{A} \frac{d U}{d t}=\frac{1}{A} u A \frac{d x}{d t}=\mathrm{U} c$,
Where:
$\boldsymbol{E}=c \boldsymbol{B}$
$\boldsymbol{S}=U c=\frac{\boldsymbol{E} \boldsymbol{B}}{\mu_{\circ}}$
$S=E \times H$

3- Intensity (I) of the wave

In plane wave: $\quad \boldsymbol{S}=\boldsymbol{E} \times \boldsymbol{H} \quad\left(\mathrm{J} / \mathrm{m}^{2} . \mathrm{sec}\right)$

Where $\boldsymbol{E}=E_{\circ} \cos (k z-\omega t) \hat{x}$
$\boldsymbol{B}=B_{\circ} \cos (k z-\omega t) \hat{y}=\left(E_{\circ} \times B_{\circ}\right) \cos ^{2}(k z-\omega t)$
$\boldsymbol{S}=c \epsilon_{\circ} E_{\circ}^{2} \cos ^{2}(k z-\omega t)$
$\varepsilon=\epsilon_{\circ} E_{\circ}^{2} \cos ^{2}(k z-\omega t)$
The average value $\cos ^{2}(k z-w t)$ over one period is equal to $\left(\frac{1}{2}\right)$
$|S|_{\text {ave }}=\frac{1}{2} c \epsilon_{o} E_{\circ}^{2}$

4- Momentum (P)

The linear momentum carried by an EM wave is related to energy as,
$\nabla \cdot \boldsymbol{E}=\frac{\rho}{\epsilon_{\mathrm{o}}}$
$\nabla \times \boldsymbol{B}=\mu_{\circ} J+\epsilon_{\circ} \mu_{\circ} \frac{d \boldsymbol{E}}{d t}$
$F 1=\epsilon_{\circ}(\nabla . \boldsymbol{E}) \boldsymbol{E}+\frac{1}{\mu_{\circ}}(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}-\epsilon_{\circ} \frac{\partial \boldsymbol{E}}{\partial t} \times \boldsymbol{B}$

Now consider; $\quad \frac{\partial(\boldsymbol{E} \times \boldsymbol{B})}{\partial t}=\frac{\partial \boldsymbol{E}}{\partial t} \times \boldsymbol{B}+\boldsymbol{E} \times \frac{\partial B}{\partial t}$

$$
\overrightarrow{F_{1}}+\epsilon_{\circ} \frac{\partial(\boldsymbol{E} \times \boldsymbol{B})}{\partial t}=\epsilon_{\circ}(\nabla . \boldsymbol{E}) \boldsymbol{E}-\epsilon_{\circ} \boldsymbol{E} \times(\nabla \times \boldsymbol{E})+\frac{1}{\mu_{\circ}}(\nabla . \boldsymbol{B}) \boldsymbol{B}-\frac{1}{\mu_{\circ}}(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}
$$

But; $\boldsymbol{\nabla} . \boldsymbol{B}=0, \quad \boldsymbol{\nabla} \times \boldsymbol{E}=\frac{\partial \boldsymbol{B}}{\partial t}$

Therefore;
$F_{t o t a l}+\frac{\partial}{\partial x} \int_{v} \epsilon_{\circ}(\boldsymbol{E} \times \boldsymbol{B}) d v=\int_{v}(r . h . s) d v$
$P_{\text {field }}=\int_{v} \epsilon_{\circ}(\boldsymbol{E} \times \boldsymbol{B}) d v=\frac{1}{c^{2}} \int \boldsymbol{S} d v$
$g=\frac{S}{c^{2}} \quad$ Momentum density
$P=\frac{U}{C}$
The momentum conservation of EM field.

5-Radiation pressure

The pressure from an EM wave, for example the radiation pressure from sun light hitting earth is ($6 \times 10^{8} \mathrm{kgm} / \mathrm{s}^{2}$), can be expressed as:
$\frac{F}{A}=\frac{S}{c}=u$
Radiation pressure $=\frac{|S|}{C}=\frac{|E \times B|}{\mu_{\circ} C}=\frac{E^{2}}{\mu_{\circ} c^{2}}\left(\mathrm{kgm} / \mathrm{s}^{2}\right)$
Problem 3: The electromagnetic plane wave propagates in the air free source and magnetic field given by: $\quad \boldsymbol{H}_{z}=H_{0} e^{j(\omega t-5 \pi y)} \quad \mathrm{A} / \mathrm{m}$
Find:
a) frequency of EM wave
b) Electric field

Solution:

a) $k=5 \pi=\omega \sqrt{\mu_{\circ} \epsilon_{\circ}}=2 \pi f / 3 \times 10^{8}$
$\mathrm{f}=750 \mathrm{MHz}$
b) $\nabla \times H=j \omega \varepsilon_{0} E$
$\boldsymbol{E}_{\boldsymbol{x}}=-\eta_{\circ} \vec{H}_{\circ} e^{j(\omega t-5 \pi y)} \quad \mathrm{V} / \mathrm{m}$
Where $\eta_{0}=120 \pi \Omega$
By using (sin) sinusoidal function
$\boldsymbol{E}_{\boldsymbol{x}}=-120 \pi H_{\circ} \sin \left(2 \pi \times 750 \times 10^{6} t-5 \pi y\right) \quad \mathrm{V} / \mathrm{m}$
$\boldsymbol{H}_{z}=H_{\circ} \sin \left(2 \pi \times 750 \times 10^{6} t-5 \pi y\right)$
A/m

Problem 4: What is rms of electric field of radiation?
a) 60 watt light at distance (1 m)
b) of sunlight at the earth surface (the solar constant $\mathrm{R}=1.94 \mathrm{cal} / \mathrm{cm}^{2}$)
c) 10 watt laser focused to spot (1m) in diameter.

Solution:

a) $\boldsymbol{S}=\frac{\text { Power }}{\text { Area }}=\frac{60}{\pi(1)^{2}}=\frac{60}{\pi} \quad \mathrm{w} / \mathrm{m}^{2}$
$\boldsymbol{S}=\boldsymbol{E} \boldsymbol{H}=\operatorname{EnE}\left(\frac{\epsilon_{0}}{\mu_{0}}\right)^{1 / 2}$
$S=n \boldsymbol{E}^{2}\left(\frac{\epsilon_{\circ}}{\mu_{\circ}}\right)^{1 / 2} \quad$ for $n=1$
$\boldsymbol{E}^{2}=\boldsymbol{S}\left(\frac{\mu_{0}}{\epsilon_{0}}\right)^{1 / 2}=7.198 \times 10^{3}$
$\boldsymbol{E}=84.8 \mathrm{~V} / \mathrm{m}$
b) $\mathrm{R}=1.94$ ($\mathrm{cal} / \mathrm{cm}^{2}$. minute)
cal $\rightarrow j \quad$ cal $=4.18 J$
$\mathrm{cm}^{2} \rightarrow \mathrm{~m}^{2} \quad \quad \mathrm{~cm}^{2}=10^{-4} \mathrm{~cm}^{2}$
$\min \rightarrow \sec \quad \min =60 \mathrm{sec}$
$R=1.94 * 4.18 * 10^{4} \cdot \frac{1}{60} \quad \mathrm{w} / \mathrm{m}^{2}=1.352 * 10^{3} \quad \mathrm{w} / \mathrm{m}^{2}$
$S=R$

Note: The Poynting vector is equal to the magnitude of energy flow per unit area per unit time and equal to the solar constant
$E^{2}=S\left(\frac{\mu_{\circ}}{\epsilon_{0}}\right)^{1 / 2}=1.352 \times 10^{3}\left(\frac{9 \pi \times 10^{-7}}{8.85 \times 10^{-12}}\right)^{1 / 2}$
$=5.094 \times 10^{5}(\mathrm{~V} / \mathrm{m})^{2}=713.7 \mathrm{~V} / \mathrm{m}$
c) radius $=\frac{d}{2}=0.5 \times 10^{-6} \mathrm{~m}$
$S=\frac{\text { power }}{\pi r^{2}}=1.27 \times 10^{13} \quad \mathrm{w} / \mathrm{m}^{2}$
$E^{2}=S\left(\frac{\mu_{\circ}}{\epsilon_{\circ}}\right)^{1 / 2}=4.78 \times 10^{15} \quad(V / m)^{2}$
$E=6.917 \times 10^{7} \mathrm{~V} / \mathrm{m}$
Problem 5: A radio station transmits 10 kW signal at a frequency of 100 MHz for simplicity assume that it radiates as a point source. At a distance of 1 km from the antenna, find: a) the amplitude of electric and magnetic field strengths and b) the energy incident normally on a square plate of side 10 cm in 5 min .

Solution:

a) $\boldsymbol{S}_{a v}=\frac{\text { power }}{4 \pi r^{2}}=\frac{E_{0}^{2}}{2 \mu_{0 C}}$
$E_{0}^{2}=\frac{10000}{4 \pi(1000)^{2}} \times 2 \times 4 \pi \times 10^{-7} \times 3 \times 10^{8}$
$E_{o}=0.775 \quad \mathrm{~V} / \mathrm{m}$
$B_{o}=2.58 \times 10^{-9} \quad T$
b) $\Delta \mathrm{U}=S_{\mathrm{av}} \Delta \mathrm{t}=2.4 \times 10^{-3} \mathrm{~J}$

Problem 6: The electric field of an electromagnetic wave can be writing as:
$\mathbf{E}=20 \operatorname{Cos}\left[\left(6.28 \times 10^{8} m^{-1}\right) x-\omega t\right] j \quad \mathrm{~V} / \mathrm{m}$
a) What is the frequency wave length?
b) What is the frequency?
c) What is the magnetic field amplitude?
d) In what direction is the magnetic field?

Solution:

a) $\mathrm{k}=2 \pi / \lambda, \quad \lambda=\frac{2 \pi}{6.28 \times 10^{8}} \mathrm{~m}$,
b) $\quad K=\omega \sqrt{\mu_{\circ} \epsilon_{\circ}}$
$=2 \pi f \sqrt{\mu_{\circ} \epsilon_{\circ}} \quad f=(75) M H z$
c) $\quad|\boldsymbol{H}|=\frac{|\boldsymbol{E}|}{\eta}$
$\mathbf{H}=(0.14) \mathrm{A} / \mathrm{m}$
$\eta=\sqrt{\frac{\mu_{\circ}}{\epsilon_{\circ}}}$

Plane wave in conductor:

Properties of the EM wave in a conducting medium:

- free source
- permittivity $\varepsilon(\mathrm{F} / \mathrm{m})$
- permeability $\mu(\mathrm{H} / \mathrm{m})$
- conductivity $\sigma(\Omega \mathrm{m})^{-1} \quad, \quad \sigma \gg \omega \varepsilon$

Maxwell's equations:

$$
\begin{align*}
& \boldsymbol{\nabla} \times \boldsymbol{E}=J \omega \mu \boldsymbol{H} \tag{1}\\
& \boldsymbol{\nabla} \times \boldsymbol{H}=(\sigma+J \omega \epsilon) \boldsymbol{E} \approx \sigma \boldsymbol{E} \tag{2}
\end{align*}
$$

Multiply (∇) by both side of equation (1)

$$
\nabla^{2} \boldsymbol{E}+\gamma^{2} \boldsymbol{E}=0 \quad \text { General equation }
$$

Where $\gamma=\sqrt{j \omega \mu \sigma}=1+j \sqrt{\frac{\omega \mu \sigma}{2}}=\alpha+i \beta$

$$
\beta=\sqrt{\pi f \mu \sigma} \mathrm{rad} / \mathrm{m} \quad, \quad \alpha=\sqrt{\pi f \mu \sigma} \quad \mathrm{~m}^{-1}
$$

If the plane wave in x -direction is:
$\boldsymbol{E}=E_{x}(z, t) a_{x}$
$\frac{d^{2} E_{x}}{d z^{2}}+\gamma^{2} E_{x}=0$

Solving equation (3)
$E_{x}(z, t)=E^{+} e^{-\alpha z} e^{j(\omega t-\beta z)}+E^{-} e^{+\alpha z} e^{j(\omega t+\beta z)}$
Take the first term only and using sinusoidal function, to obtain
$E_{x}(z, t)=E^{+} \sin (\omega t-\beta z)$
The Electric field will be vanished as an exponential decay $\left(e^{-\alpha z}\right)$ as shown in figure (3).

Figure (3): shows the change of electric field $\left|E_{x}(z, t)\right|$ with vacuum z for free source medium

Note: the value of electric field in conductor medium at $Z=0$ is
$E^{+} e^{-1}=0.37 E^{+}$in $z=z_{1}=S$
Where
$\delta=$ skin depth (penetration depth)
Represented the space constant gave value as follow:
$\delta=\frac{1}{\alpha}=\frac{1}{\sqrt{\pi f \mu \sigma}}$
$\delta \alpha \frac{1}{f}$

Table (1): skin depth (δ) in medium for copper (Cu) and water from difference frequencies

δ (Sea water)	δ (copper)	F
∞	∞	0 DC
1.25 m	6.7 mm	100 Hz power line frequency
0.25 m	0.07 mm	1 MHz broadcast frequency
25 mm	$6.7 \mu \mathrm{~m}$	100 MHz TV frequency
7.9 mm	$2.1 \mu \mathrm{~m}$	1 GHz mobile frequency
2.5 mm	$0.67 \mu \mathrm{~m}$	10 GHz satellite frequency

Discussion about the table of skin depth:

1. No change in electric field at equesurface potential in vacuum.
2. Electric field vanishes after skin depth $\mathrm{Z}=5 \delta$.
3. Water considered good conductor at high frequencies.
4. skin depth at low frequencies go to hundred meters $(100 \mathrm{~Hz}$ or less $)$
5. The magnetic field eq.

$$
\begin{aligned}
& H_{y}=H^{+} e^{-\alpha z} e^{j(\omega t-\beta z)} \quad \mathrm{A} / \mathrm{m} \\
& \eta_{c}=\sqrt{\frac{j \omega \mu}{\sigma}}=R_{c}+j x_{c}
\end{aligned}
$$

$H^{+}=\frac{E^{+}}{\eta_{c}}$
$R_{c}=X_{c}=\sqrt{\frac{\pi f \mu}{\sigma}} \quad(\Omega) \quad$ Impedence for conductor
Therefore magnetic field vanishes inside conductor
6. The impedance for small conductor medium approximate zero for matters (Copper, Gold, Aluminum, $\mathrm{Fe} . .$.). Therefore consider the conductor material for EM wave.
7. To change impedance with frequency f increase when η_{c} increase ($\eta \propto f$).
8. Finally, the EM wave will be found only in very short distances in conductor, not longer than (5δ) i.e. EM wave evanescent inside conductor, and the phase velocity for evanescent wave in conductor:
$V_{p}=\sqrt{\frac{2 \omega}{\mu \sigma}} \mathrm{~m} / \mathrm{s}$
$V_{g}=2 \sqrt{\frac{2 \omega}{\mu \sigma}} \mathrm{~m} / \mathrm{s}$
the phase velocity inside Copper

$$
v_{p}=0.4 \sqrt{f} \quad \mathrm{~m} / \mathrm{s} \quad, \quad v_{g}=0.8 \sqrt{\mathrm{f}} \quad \mathrm{~m} / \mathrm{s}
$$

The field in conductor media:
$E_{x}(z)=E^{+} e^{-\gamma z} \quad \mathrm{~V} / \mathrm{m}$
$H_{y}(z)=H^{+} e^{-\gamma z} \quad A / m$
$J_{x}(z)=J^{+} e^{-\gamma z} \quad A / m^{2}$

Problem 7: If the value of electric field for EM wave inside water $100 \mathrm{mV} / \mathrm{m}$, find the skin depth to arrive $(100 \mu \mathrm{~V} / \mathrm{m})$ low sign to 60 dB where frequencies 1 $\mathrm{kHz}, 1 \mathrm{MHz}, 1 \mathrm{GHz}, \sigma=4(\Omega m)^{-1}$

Solution:

$\alpha=$ attenution constant $=\sqrt{\pi f \sigma \mu}=4 \pi \sqrt{10^{-7} f}$ neper $/ \mathrm{m}$
$|\boldsymbol{E}|=E_{\circ} e^{-\alpha d}$ Electric field as skin depth function

$$
\begin{aligned}
& 100 \times 10^{-6}=100 \times 10^{-3} e^{-\alpha d} \\
& d=\frac{\ln (1000)}{\alpha}
\end{aligned}
$$

\mathbf{F}	\mathbf{S}
1 KHz	55 m
1 MHz	174 cm
1 GHz	55 mm

Problem 8: The EM wave has frequency 300 MHz propagated in vacuum source and electric field: $\boldsymbol{E}=E_{1}\left(-\frac{1}{\sqrt{2}} a_{x}+\frac{1}{\sqrt{2}} a_{y}\right) e^{[j(\omega t+\sqrt{2 \pi} x+k y Y)]}$

Find: (a) K_{y} (b) wavelength for (x, y, z) (c) \vec{H} magnetic field

Solution:

$K=\frac{2 \pi}{\lambda} \sqrt{K_{x}^{2}+K_{y}^{2}}=\sqrt{2 \pi+K_{y}^{2}}$
$K_{y}=\sqrt{2} \pi \frac{\mathrm{rad}}{\mathrm{m}}=K_{x}$
And $\lambda x=\lambda y=\sqrt{2} m, \lambda z=\infty$
$H=-\frac{1}{j \omega \mu} \nabla \times \mathrm{E}=\frac{E_{1}}{\eta_{0}} e^{[j(\omega t+\sqrt{2} \pi(x+y)]} A / m$
Where
$\eta_{0}=120 \pi$, to rewrite the fields in sinusoidal function
$\boldsymbol{E}=\frac{E_{1}}{\sqrt{2}}\left(-a_{x}+a_{y}\right) \sin [\omega t+\sqrt{2} \pi(x+y)] V / m$
$\boldsymbol{H}=\frac{-E_{1}}{120 \pi} \sin [\omega t+\sqrt{2} \pi(x+y)] a_{z} \quad A / m$

Energy flow, power and Poynting vector:

_By using Maxwell's equation to obtain:

$\nabla \cdot(E \times H)=\boldsymbol{H} \cdot \boldsymbol{\nabla} \times \boldsymbol{E}-\boldsymbol{E} \cdot \boldsymbol{\nabla} \times \boldsymbol{H}$
$\boldsymbol{\nabla} \cdot(\boldsymbol{E} \times \boldsymbol{H})=\boldsymbol{H} \cdot\left(-\mu \frac{d \boldsymbol{H}}{d t}\right)-\boldsymbol{E} \cdot\left(\sigma \mathbf{E}+\varepsilon \frac{d \boldsymbol{E}}{d t}\right)$
$\boldsymbol{\nabla} \cdot(\boldsymbol{E} \times \boldsymbol{H})=-\sigma|\boldsymbol{E}|^{2}-\frac{\varepsilon}{2} \frac{d|\boldsymbol{E}|^{2}}{d t}-\frac{\mu}{2} \frac{d|\boldsymbol{H}|^{2}}{d t}$
The following equation represents power density per volume, W / m^{3} to integral:

$$
P=-\iint \boldsymbol{E} \times \boldsymbol{H} \cdot d s=\iiint\left\{\sigma|\boldsymbol{E}|^{2}+\frac{1}{2}\left(\varepsilon \frac{d|E|^{2}}{d t}+\mu \frac{d|\boldsymbol{H}|^{2}}{d t}\right)\right\} d V
$$

Where
$\iiint \sigma|\boldsymbol{E}|^{2}$ Represent the lose power conductor medium per volume
$\frac{1}{2} \iiint \varepsilon \frac{d|E|^{2}}{d t}$ Represent the average electric energy storage in medium per volume $\frac{1}{2} \iiint \mu \frac{d|H|^{2}}{d t}$ Represent the average magnetic energy storage in medium per volume But the quantity; $\mathbf{E} \times \boldsymbol{H}$ is called Poynting vector
$\mathbf{S = E \times \mathbf { H }} \mathrm{W} / \mathrm{m}^{2}$
Take the unit vector for all limits or boundaries:
$a_{s}=a_{E} \times a_{H}$, then
$a_{s}=\frac{s}{|s|}, \quad a_{E}=\frac{E}{|E|} \quad, \quad a_{H}=\frac{H}{|H|}$
The average $\mathbf{S}=\nabla \cdot \boldsymbol{S}=\frac{1}{2} \nabla \cdot\left(\boldsymbol{E} \times \boldsymbol{H}^{*}\right)$

Where
$\boldsymbol{H}=H^{+} e^{j \omega t}, \quad \boldsymbol{H}^{*}=H^{+} e^{j \omega t}$
$\nabla \cdot \boldsymbol{S}_{\text {ave }}=\frac{1}{2} \sigma|\boldsymbol{E}|^{2}+\frac{j}{2}\left(\mu|\boldsymbol{H}|^{2}-\varepsilon|\boldsymbol{E}|^{2}\right)$

By using dispersive theorem and take integral of equation (A)
$\hat{P}=\frac{1}{2} V I^{*}=\frac{1}{2}|Z|^{*}=\frac{1}{2}|I|^{2}$
$Z=R+j x=R+j(x l+x c) \quad \Omega$
$R=\frac{1}{|I|^{2}} \iiint \sigma|\boldsymbol{E}|^{2} d V$
$\left.x=\frac{1}{|I|^{2}} \iiint \mu|\boldsymbol{H}|^{2}-\varepsilon|\boldsymbol{E}|^{2}\right) d V$
$E_{x}=E_{0} \sin (\omega t-\beta z)$
$H_{y}=H_{0} \sin (\omega t-\beta z)$
$\omega=\varepsilon E_{0}^{2} \sin ^{2}(\omega t-\beta z)$
$V_{g}=\frac{\mathrm{s}}{\mathrm{V}}=\frac{1}{\sqrt{\mu \varepsilon \mathrm{a}_{\mathrm{z}}}} \quad(\mathrm{m} / \mathrm{s}) \quad$ Group velocity

The energy and momentum radiation pressure of EM wave in

conductor medium:

$U_{E}=\frac{1}{2} \epsilon E^{2}, \quad U_{H}=\frac{1}{2} \mu H^{2} \quad, \quad U_{\text {total }}=\frac{1}{V} E H$

Where; $v=\frac{1}{\sqrt{\epsilon \mu}}$

Linear momentum $=\frac{\text { absorb energy }}{v}$
Radiation pressure $=\frac{\boldsymbol{F}}{A}=\frac{|\boldsymbol{s}|}{v}$
$\vec{P}=\boldsymbol{E} \times \boldsymbol{H}$
$S=\boldsymbol{E} \times \boldsymbol{H}$
Energy flux $\Longrightarrow S_{a v e}=u_{v}=\frac{E B}{2 \mu}$

Boundary conditions in non-continuity of Maxwell equations is shown in figure

(4).

Figure (4): Boundary conditions in non-continuity of Maxwell equations.
Conductivity media $\quad \sigma_{1}=\sigma_{2} \neq \infty, J_{s}=M_{s}=0, q_{e s}=q_{m s}=0$

In general:

- Normal electric field density:

$$
\hat{\mathrm{n}} \hat{\mathrm{n}}\left(\mathrm{D}_{2-} \mathrm{D}_{1}\right)=\mathrm{q}_{\mathrm{es}}, \hat{n} .\left(\mathrm{D}_{2}-\mathrm{D}_{1}\right)=0
$$

- Normal magnetic flux density:

$$
\hat{n} .\left(\mathrm{B}_{2}-\mathrm{B}_{1}\right)=\mathrm{q}_{\mathrm{ms}}, \hat{n} .\left(\mathrm{B}_{2}-\mathrm{B}_{1}\right)=0
$$

- Tangential \vec{E} intensity:

$$
\hat{n} .\left(\mathrm{E}_{2}-\mathrm{E}_{1}\right)=\mathrm{M}_{\mathrm{s}}, \hat{n} \times\left(\mathrm{E}_{2}-\mathrm{E}_{1}\right)=0
$$

- Tangential \vec{B} intensity:

$$
\hat{n} \times\left(\mathrm{H}_{2}-\mathrm{H}_{1}\right)=\mathrm{J}_{\mathrm{s}}, \times\left(\mathrm{H}_{2}-\mathrm{H}_{1}\right)=0
$$

Maxwell's equations and Boundary conditions:

$\nabla \times \boldsymbol{E}=-\mathrm{j} \omega \boldsymbol{B}, \nabla \times \boldsymbol{H}=\mathrm{J}+\mathrm{j} \omega \Delta, \nabla \cdot \mathbf{D}=\rho_{\mathrm{v}}, \nabla \cdot \mathbf{B}=0$

1- Normal field :

$$
\iint \boldsymbol{D} \cdot d s=\iiint \rho_{v} d v
$$

When $\Delta h \Rightarrow 0 \Rightarrow \boldsymbol{D} n_{1}-\boldsymbol{D} n_{2}=\rho_{s}$

Non conductivity in Dn in interface which light travel between the two media equal to surface charge density in interface, while for \boldsymbol{B} :
$\iint \boldsymbol{B} \cdot d s=0$
$B_{n 1}=B_{n 2}$ i.e no magnetic charge

2 - Tangential fields:

$$
\int \boldsymbol{E} \cdot d l=\int \boldsymbol{B} \cdot d s
$$

$E_{t 1}=E_{t 2}$

Continuous electric field in interface i.e no magnetic current for H -field:
$\int \boldsymbol{H} \cdot d l=\iint J \cdot d s+\iint \frac{d \boldsymbol{D}}{d t} \cdot d s$
$H_{t 1}-H_{t 2}=K$

K : linear current density, non-continuing magnetic field in interface medium.
Problem 9: If EM wave in free space with frequency $300 \mathrm{MHz}, \boldsymbol{E}=4 e^{j(\omega t-k z)}$ find (1) wavelength and phase velocity v_{p} (2) H field (3) average Poynting vector $\boldsymbol{S a v}$ and power from rectangle in plane $\mathrm{z}=0$ and about point $(0,0),(5,0),(5,10),(0,10)$

Solution:

1) $k=\omega \sqrt{\mu \epsilon_{0}}=2 \pi * 3 * 10^{8}=\frac{2 \pi}{\lambda} \longrightarrow \lambda=1 \mathrm{~m}$

$$
\mathrm{V}_{\mathrm{p}}=\frac{\omega}{k}=\frac{1}{\sqrt{\mu \epsilon}}=3 * 10^{8} \mathrm{~m} / \mathrm{sec}
$$

2) $\boldsymbol{\nabla x E}=-\mathrm{j} \omega \mu \boldsymbol{H}$

$$
\boldsymbol{H}=-\frac{4}{120 \pi} e^{j(\omega t-k z)}
$$

3) $\mathbf{S a v}=1 / 2 \boldsymbol{E x H}^{*}=\left(\frac{1}{2}\right)\left[4 a y *\left(\frac{4}{120 \pi} a x\right)\right]=\frac{1}{15 \pi} a z \frac{w}{m 2}$

$$
p=\iint \operatorname{Sav} d s=\int_{0}^{5} \int_{0}^{10} \operatorname{Sav} d x d y d z=\frac{10}{3 \pi} w
$$

Problem10: In medium dispersive in plane wave have σ, μ, ω and f , verify $\sigma \gg$ $\omega \epsilon$ and E to z direction, $\mathrm{E}=10 \mathrm{v} / \mathrm{m}$ about $\mathrm{x}=0$. Find:

1) \mathbf{H}, \mathbf{E} for a medium.
2) Sav, P for rectangle $5^{*} 10 \mathrm{~m}^{2}$ in $z y$ plane and slides parallel to $Z Y$ axes about $\mathrm{x}=0$ and $\mathrm{x}=\delta, \delta$ is skin depth.

Solution:

1) $\mathbf{E}_{2}=10 e^{-\alpha x} e^{j(\omega t-\beta z)}$

$$
\begin{aligned}
& \alpha=\beta=\sqrt{\pi \mu f \sigma}=\frac{1}{\delta} \\
& \boldsymbol{H}=\frac{|\boldsymbol{E}|}{\eta_{c}} a y=\frac{10}{\eta_{c}} e^{-\alpha x} e^{j(\omega t-\beta x)} \text { ay } \quad \frac{A}{m}
\end{aligned}
$$

$$
\mathrm{R}=\mathrm{X}=\sqrt{\pi f \mu \backslash \sigma} \Omega ; \mathrm{\eta}_{c}=R+j x
$$

2) $\mathrm{Sav}=1 / 2 \boldsymbol{E x} \boldsymbol{H}^{*}=1 / 210 e^{-\alpha x} * \frac{-10}{R-j x} e^{-\alpha x}$ ay $\frac{w}{m 2}$

$$
\begin{aligned}
& =\frac{50}{R \sqrt{2}-45} e^{-2 \alpha x} a x \frac{w}{m 3} \\
& p(\delta=x)=\frac{2500}{2 R}(j+1) e^{-2} W \\
& p(x=0)=\frac{45}{R \sqrt{2}} 5 * 10=\frac{2500(j+1)}{R \sqrt{2} \sqrt{2}} w
\end{aligned}
$$

Problem 11: The time harmonic complex field inside source free conducting pipe for rectangular filled with free space which is shown in bellow figure is given by:

$$
\boldsymbol{E}=a y E_{0} \sin \frac{\pi}{a} x e^{-j \beta_{0} z} 0 \leq x \leq a, 0 \leq v \leq b
$$

$\beta z=\beta_{0} \sqrt{1-\left(\frac{\lambda_{0}}{2 a}\right)^{2}}$
E_{0} is constant, $\beta_{0}=\frac{2 \pi}{\lambda_{0}}=\omega \sqrt{\mu_{0} \varepsilon_{0}}$ along z- axis determine
a) The corresponding complex magnetic field.
b) Supplied complex power.
c) $S a v$

Solution:

$$
E=\hat{a}_{y} E_{0} \sin \left(\frac{\pi}{6} x\right) e^{-j \beta_{1} z}
$$

b. $P_{i}=-\frac{1}{2} \iiint_{V}\left(\underline{H}_{i}^{*} \boldsymbol{X}_{i}^{0}+E_{i}^{0} \underline{I}_{i}^{*}\right) d v=0$
c. $P_{e}=\int_{S}\left(\frac{1}{2} E \times H^{*}\right) \cdot d \underline{s}$

$$
\begin{array}{r}
\frac{1}{2} E \times H^{*}=\frac{1}{2} \hat{a}_{y} E_{y} \times\left(-\hat{a}_{x} H_{x}^{*}-\hat{a}_{z} H_{z}^{*}\right)=\frac{1}{2}\left(\hat{a}_{x} G_{y} H_{x}^{*}-\hat{a}_{x} E_{y} H_{z}^{*}\right) \\
\underline{Q}=\frac{1}{2} E \times H^{*}=\hat{a}_{z} \frac{\hat{B}_{y}}{2 m H_{0}}\left|E_{0}\right|^{2} \sin ^{2}\left(\frac{\pi}{6} x\right)+\hat{a}_{x} \frac{E_{y} j^{2}}{j^{2} w F_{0}}\left(\frac{\pi}{x}\right) \sin \left(\frac{\pi}{2} x\right) \cos (\bar{\pi} x)
\end{array}
$$

Note: All the above for plane EM wave in single medium without experiencing reflection and refraction in homogenous, free source and linear medium.

Electromagnetic theory:

The phenomena of reflection and refraction of light from standing point of EM theory:

Fresnel relation:

Fresnel relation is shown in figure (5).

Figure (5): represent Fresnel relation.

The space time dependence of these three waves, aside from constant amplitude factors is given by:

$e^{i\left(k_{i} r-\omega t\right)}$	incident
$e^{i\left(k_{r} r-\omega t\right)}$	reflected
$e^{i\left(k_{t} r-\omega t\right)}$	transmitted

- The condition that $k_{i} r=k_{r} r=k_{t} r$ is required at the interface for the boundary condition to be satisfied all the points along the interface at all times.
- The projection of these three wave vector on the interface are equal so that

$$
k_{i} \sin \theta_{i}=k_{r} \sin \theta_{r}=k_{t} \sin \theta_{t}
$$

Where:
θ_{i} the angle of incident, θ_{r} the angle of reflection, θ_{t} the angle of transmission
Because $k_{i}=k_{r}$ and $k_{i}=\frac{n_{1}}{n_{2}}$
$\theta_{i}=\theta_{r} \quad($ Law of reflection $)$
$n_{1} \sin \theta_{i}=n_{2} \sin \theta_{t}$ (Snell's Law)

Boundary conditions:

| Medium 1 | $\stackrel{\mathbf{n} \times \boldsymbol{H}_{1}}{\longleftarrow}$ | $\boldsymbol{B}_{1 n}$ | $\boldsymbol{D}_{1 n}$ | $\underline{\mathbf{n} \times \boldsymbol{E}_{1}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Medium 2 | $\stackrel{\mathbf{n} \times \boldsymbol{H}_{2}}{ }$ | $\boldsymbol{B}_{2 n}$ | $\boldsymbol{D}_{2 n}$ | $\overrightarrow{\mathbf{n} \times \boldsymbol{E}_{2}}$ |

These two situations of Fresnel Formula:

1-S polarization

$$
\vec{E} \perp_{\text {plan of incident }}
$$

(Also known as σ, N or TE polarization: no)

2-P polarization: no

$$
\vec{E} / / \text { plan of incident }
$$

(Also called Π or TM polarization)

1-TE-polarization (S-wave)

The incidence of vertical polarized wave on medium is shown in figure (6).

Figure (6): The incidence of vertical polarized wave on medium.
The reflection coefficient, and the transmission coefficient, t, of TE electric field is given by Fresnel equations:

$$
\begin{aligned}
& r_{s}=E_{r} / E_{i} \quad \mathbf{E} \perp \text { plan of incident } \\
& =\frac{n_{1} \cos \theta_{i}-n_{2} \cos \theta_{t}}{n_{1} \cos \theta_{i}-n_{2} \cos \theta_{t}}=\frac{n_{1} \cos \theta_{i}-\sqrt{n_{2}^{2}-n_{1}^{2} \sin ^{2} \theta_{i}}}{n_{1} \cos \theta_{i}-\sqrt{n_{2}^{2}-n_{1}^{2}} \sin ^{2} \theta_{i}} \\
& t_{s=E_{t}}=\frac{2 n_{1} \cos \theta_{i}}{n_{1} \cos \theta_{i}+n_{2} \cos \theta_{t}}=\frac{2 n_{1} \cos \theta_{i}}{n_{1} \cos \theta_{i} \sqrt{n_{2}^{2}-n_{1}^{2} \sin ^{2} \theta_{i}}}
\end{aligned}
$$

The intensity reflectance and transmittance, R and T , which are also known as reflectivity and transmissivity, are given by:

$$
R_{s=I_{r} / I_{i}}=\left|\frac{n_{1} \cos \theta_{i}-n_{2} \cos \theta_{t}}{n_{1} \cos \theta_{i}-n_{2} \cos \theta_{t}}\right|^{2}
$$

$$
T_{s}=I_{t} I_{i}=1-R_{s}
$$

2-TM-Polarization (P-wave)

The incidence of parallel polarized wave on medium is shown in figure (7).

Figure (7): The incidence of vertical polarized wave on medium.
The reflection coefficient, r, and transmission coefficient, t, of the TM electric field are given by Fresnel equation:
$r_{p}=E_{r} / E_{i}=\frac{-n_{2} \cos \theta_{i}+n_{1} \cos \theta_{t}}{n_{2} \cos \theta_{i}+n_{1} \cos \theta_{t}}=\frac{-n_{2}^{2} \cos \theta_{i}+n_{1} \sqrt{n_{2}^{2}-n_{1}^{2} \sin \theta_{i}}}{n_{2}^{2} \cos \theta_{i}+n_{1} \sqrt{n_{2}^{2}-n_{1}^{2} \sin ^{2} \theta_{i}}}$
$t_{p}=E_{t} / E_{i}=\frac{2 n_{1} \cos \theta_{i}}{n_{2} \cos \theta_{i}+n_{1} \cos \theta_{t}}=\frac{2 n_{1} n_{2} \cos \theta_{i}}{n_{2}^{2} \cos \theta_{i}+n_{1} \sqrt{n_{2}^{2}-n_{1}^{2} \sin ^{2} \theta_{i}}}$

The intensity reflectance and transmittance for Tm polarization are given by:
$R_{p}=I_{r} I_{i}=\left|\frac{-n_{2} \cos \theta_{i}+n_{1} \cos \theta_{t}}{n_{2} \cos \theta_{i}+n_{1} \cos \theta_{t}}\right|^{2}$
$T_{p}=I_{t} I_{i}=1-R_{p}$

Total Reflection:

For $\theta_{i}>\theta_{c} \quad \sin \theta_{i}>\frac{n_{2}}{n_{1}} \quad$ for S and P polarization :

$$
\left|r_{S}\right|=\left|\frac{n_{1} \cos \theta_{i}-i \sqrt{n_{1}^{2} \sin ^{2} \theta_{i}-n_{2}^{2}}}{n_{1} \cos \theta_{i}+i \sqrt{n_{1}^{2} \sin ^{2} \theta_{i}-n_{2}^{2}}}\right|=1
$$

$$
\left|r_{p}\right|=\frac{-n_{2}^{2} \cos \theta_{i}+i n_{1} \sqrt{n_{1}^{2} \sin ^{2} \theta_{i}-n_{2}^{2}}}{n_{2}^{2} \cos \theta_{i}+i n_{1} \sqrt{n_{1}^{2} \sin ^{2} \theta_{i}-n_{2}^{2}}}
$$

Problem 12 Two medium glass and air find
a) θ_{B}, b) θ_{c} internal reflection as shown in figure (3)

Solution:

$$
\theta_{c}=\sin ^{-1} \frac{n_{2}}{n_{1}} \rightarrow \theta_{c=42^{\circ}}, \quad \theta_{B}=\tan ^{-1} \frac{n_{2}}{n_{1}} \quad \rightarrow \theta_{B}=34^{\circ}
$$

Phase change in total internal reflection:

$r_{s}=a e^{-i \alpha} / a e^{i \alpha}=e^{-\varphi_{s}}$
$r_{p}=-b e^{-i \beta} / b e^{i \beta}=-e^{-i \varphi_{p}}$
$a e^{-i \alpha}=n_{1} \cos \theta_{i}-i \sqrt{n_{1}^{2} \sin ^{2} \theta_{i}-n_{2}^{2}}$
$b e^{-i \beta}=n_{2}^{2} \cos \theta_{i}-i n_{1} \sqrt{n_{1}^{2} \sin ^{2} \theta_{i}-n_{2}^{2}}$
See that $\varphi_{s}=2 \alpha$ and $\varphi_{p}=2 \beta$. Accordingly, $\tan \alpha=\tan \left(\frac{\varphi_{s}}{2}\right)$ andtan $\beta=$ $\tan \left(\frac{\varphi_{p}}{2}\right)$.

Therefore find the following expressions for the phase changes that occur in internal reflection:
$\tan \left(\frac{\varphi_{s}}{2}\right)=\frac{\sqrt{n_{1}^{2} \sin ^{2} \theta_{i}-n_{2}^{2}}}{n_{1} \cos \theta_{i}}$
$\tan \left(\frac{\varphi_{p}}{2}\right)=\frac{n_{1} \sqrt{n_{1}^{2} \sin ^{2} \theta_{i}-n_{2}^{2}}}{n_{2}^{2} \cos \theta_{i}}$

Evanescent waves:

$E_{t}=E_{t} e^{i\left(k_{t} \cdot r-\omega t\right)}$

$$
k_{t} \cdot r=k_{t} x \sin \theta_{t}+k_{t} y \cos \theta_{t}
$$

$$
=k_{t} x\left(\frac{n_{1}}{n_{2}}\right) \sin \theta_{i}+k_{t} y \sqrt{1-\left(\frac{n_{1}}{n_{2}}\right)^{2} \sin ^{2} \theta_{i}}
$$

$$
=k_{i} x \sin \theta_{i}+i k_{t} y \sqrt{\left(n_{1}^{2} \sin ^{2} \theta_{i} / n_{1}^{2}\right)-1}
$$

The wave function for the electric field of evanescent wave is:

$$
E_{\text {evan }}=E_{t} e^{(-a y)} e^{i\left[\left(k_{i} \sin \theta_{i}\right) x-\omega t\right]}
$$

Where

$$
a=k_{t} \sqrt{\left(n_{1}^{2} \sin ^{2} \theta_{i} / n_{2}^{2}\right)-1}
$$

Evanescent wave amplitude normal to the interface drops exponentially is shown in figure (8).

Figure (8): Evanescent wave amplitude normal to the interface drops exponentially

Skin depth $(\delta): \quad \delta=\frac{1}{k_{t} \sqrt{\left(\frac{n_{1}^{2}}{n_{2}^{2}} \sin ^{2} \theta_{i}-1\right)}}$
Where $\mathrm{K}_{\mathrm{t}}=\mathrm{K}_{2}$
In conductor: $\delta=(2 / \sigma \mu \omega)^{1 / 2}$

Brewster's angle:

There is a particular angle at which the reflectivity is Zero for TE polarization light wave, and this angle is known (Brewster's angle).
$r_{p}=\frac{\tan \left(\theta_{i}-\theta_{t}\right)}{\tan \left(\theta_{i}+\theta_{t}\right)}=0$, when $\theta_{i}+\theta_{t}=90^{\circ}$
$\frac{n_{t}}{n_{2}}=\frac{\sin \theta_{i}}{\sin \left(90-\theta_{i}\right)}=\frac{\sin \theta_{i}}{\cos \theta_{i}}$
$\theta_{B}=\tan ^{-1}\left(\frac{n_{t}}{n_{i}}\right)$
The power reflectivity and transmissivity for TE and TM polarization
$A_{i}=A_{r}=A_{o} \cos \theta_{i} \quad, \quad A_{t}=A_{o} \cos \theta_{t}$
Where $\alpha=\mathrm{i}, \mathrm{r}$ and t
$\mathrm{S}_{\alpha=1} / 2\left(\varepsilon_{\alpha} / \mu_{\alpha}\right)^{1 / 2} \mathrm{E}^{2}$
Where $\mu_{\alpha=} \mu_{\text {o }}$
$\varepsilon_{\alpha}=\mathrm{n} \alpha(\varepsilon) 1^{12}$
$W_{i}=n_{i} / 2=\left(\varepsilon_{\circ} / \mu_{\circ}\right)^{1 / 2} E_{i}^{2} A_{0} \cos \theta_{i} \quad$ incident wave
$W_{r}=n_{r} / 2=\left(\varepsilon_{\mathrm{o}} / \mu \rho 1^{12} E_{r}^{2} A_{0} \cos \theta_{r} \quad\right.$ reflected wave
$W_{t}=n_{t} / 2=\left(\varepsilon_{\circ} / \mu_{o}\right)^{1 / 2} E_{t}^{2} A_{0} \cos \theta_{t} \quad$ transmitted wave

The reflectivity and transmitted power for TE and TM polarization
$\mathrm{R}=W_{r} / W_{i}=E_{r}^{2} / E_{i}^{2}=|\mathrm{r}|^{2}$
$\mathrm{T}=W_{t} / W_{i}=n_{t} \cos \theta_{t} E_{t}^{2} / n_{i} \cos \theta_{i} E_{t}^{2}=n_{t} \cos \theta_{t} / n_{i} \cos \theta_{i}=|\mathrm{t}|^{2}$

Problem 13: Draw the relation between θ_{i} and Rs, Rp
1- air- glass interface 2- glass- air interface

Solution:

For the incident light in coming from low refractive index material to high refractive index materials

2) For high refractive index material to low refractive index material:

Normal incidence of EM waves:

1) Optical wave at a dielectric interface
2) Optical wave at a conducting medium
3) Optical wave at a dielectric interface:

Normal incidence in dielectric medium is shown in figure (9).

Figure (9): Normal incidence in dielectric medium is shown in figure (9).

Reflectivity at normal incident:

- Incident wave

$$
\mathbf{E}_{\mathrm{x}}^{\mathrm{i}}=\mathrm{E}_{1} \mathrm{e}^{\mathrm{j}\left(\omega \mathrm{t}-\mathrm{k}_{1} \mathrm{z}\right)}
$$

$$
\mathbf{H}_{\mathrm{y}}^{\mathrm{i}}=\mathrm{H}_{1} \mathrm{e}^{\mathrm{j}\left(\omega \mathrm{t}-\mathrm{k}_{1} \mathrm{z}\right)}=\frac{E_{1}}{\eta 1} \mathrm{e}^{\mathrm{j}\left(\omega \mathrm{t}-\mathrm{k}_{1} \mathrm{z}\right)}
$$

$\eta_{1}=\left(\mu_{1} / \varepsilon_{1}\right)^{1 / 2}, \quad \eta_{2}=\left(\mu_{2} / \varepsilon_{2}\right)^{1 / 2}$
$\mathrm{K}_{1}=\omega\left(\varepsilon_{1} \cdot \mu_{1}\right)^{1 / 2}, \quad \mathrm{~K}_{2}=\omega\left(\varepsilon_{2} \cdot \mu_{2}\right)^{1 / 2}$
Where
$\mathrm{\eta}$: characteristic impedance, k : wave number

- Reflected wave

$$
\mathbf{E}_{\mathrm{x}}^{\mathrm{r}}=\mathrm{E}_{2} \mathrm{e}^{\mathrm{j}\left(\omega \mathrm{t}-\mathrm{k}_{2} \mathrm{z}\right)}
$$

$$
\mathbf{H}_{\mathrm{y}}^{\mathrm{r}}=\mathrm{H}_{2} \mathrm{e}^{\mathrm{j}\left(\omega \mathrm{t}-\mathrm{k}_{2} \mathrm{z}\right)}=\frac{E_{2}}{\mathrm{n}^{2}} \mathrm{e}^{\mathrm{j}\left(\omega \mathrm{t}-\mathrm{k}_{2} \mathrm{z}\right)}
$$

- Transmitted wave

$$
\mathbf{E}_{\mathrm{x}}^{\mathrm{t}}=\mathrm{E}_{3} \mathrm{e}^{\mathrm{j}\left(\mathrm{wt}-\mathrm{k}_{2} \mathrm{z}\right)}
$$

$$
\mathbf{H}_{\mathrm{y}}^{\mathrm{t}}=\mathrm{H}_{3} \mathrm{e}^{\mathrm{j}\left(\omega \mathrm{t}-\mathrm{k}_{1} \mathrm{z}\right)}=\frac{E_{3}}{\eta^{2}} \mathrm{e}^{\mathrm{j}\left(\omega \mathrm{t}-\mathrm{k}_{2} \mathrm{z}\right)}
$$

From B.Cs, get at $\mathrm{z}=0$
$\mathrm{E}_{\mathrm{t} 1}=\mathrm{E}_{\mathrm{t} 2} / \mathrm{H}_{\mathrm{t} 1}=\mathrm{H}_{\mathrm{t} 2}$
$\mathrm{E}_{1}+\mathrm{E}_{2}=\mathrm{E}_{3}$
Reflection coefficient $\quad \Gamma=\mathrm{E}_{2} / \mathrm{E}_{1}=$ reflected field $/$ incident field
Transmitted coefficient $\mathrm{T}=\mathrm{E}_{3} / \mathrm{E}_{1}=$ transmitted field $/$ incident field
$1+\Gamma=\mathrm{T}$
$1-\Gamma=\left(\eta_{1} / \eta_{2}\right) T$
$\mathrm{T}=2 \eta_{2} /\left(\eta_{2}-\eta_{1}\right)$

Problem 14: Air interface for $\mathrm{n} 1=1, \mathrm{n} 2=1.5$ glass find reflectivity and transmitted at: 1) normal incident, 2) at $\left.\theta_{i}=45^{\circ}, 3\right)$ Brewster angle, 4) critical angle .

Solution:

1) At normal incident $\cos \theta_{i}=\cos \theta_{t}=1$
$r=r_{s}=r_{p}=\frac{n_{1}-n_{2}}{n_{1}+n_{2}}=-0.21$
And $\mathrm{R}=|\mathrm{r}|^{2}=4.3 \%$

The glass window attenuates light due to reflection near normal in cadence by about twice this moment around 8%.
2) At $\theta ;=45^{\circ}$ the reflectance for the two polarization are quite different
$\theta_{\mathrm{t}}=\operatorname{Sin}^{-1}\left(\frac{n 1}{n 2} \operatorname{Sin} \theta i\right)=27.7^{\circ}$
The reflectances are:
$R_{S}=\left|r_{s}\right|^{2}=\left|\frac{n_{1} \cos \theta_{i}-n_{2} \cos \theta_{t}}{n_{1} \cos \theta_{i}-n_{2} \cos \theta_{t}}\right|^{2}=9.7 \%$
$R_{p}=\left|r_{p}\right|^{2}=\left|\frac{n_{1} \cos \theta_{t}-n_{2} \cos \theta_{i}}{n_{1} \cos \theta_{t}-n_{2} \cos \theta_{i}}\right|^{2}=0.94 \%$

Or about 10% and 1% respectively.
The T_{m} polarization is much smaller because this.
Incidence angle is fairly close to the Brewster angle.
3) $\theta_{B}=\tan ^{-1}\left(\frac{n_{2}}{n_{1}}\right)=56.7^{0}$
4) $\theta_{c}=\sin ^{-1}\left(\frac{n_{\text {air }}}{n_{\text {glass }}}\right)=41.1^{0}$

2) Optical wave at a conducting medium

- Reflection from a conductor
$R=|r|^{2}=\frac{n-1}{n+1} \cdot \frac{n^{*}-1}{n^{*}+1}=\frac{(n-1) 2_{+}(n k) 2}{(n+1) 2+(n k) 2}$
$\mathrm{R}=1-\frac{a n}{(n+1) 2+(n k) 2}$

Where $\mathrm{K}=\omega \sqrt{\mathrm{M}\left(\varepsilon-\frac{\tau \boldsymbol{\sigma}}{\boldsymbol{\varphi}}\right)} \quad, n=n(1-i k), \mathrm{n}^{*}=\mathrm{n}(1+\mathrm{ik})$
$\mathrm{K}=n \omega / \mathrm{c}$

- Skin depth in conductor medium

- The filed reflection coefficient far TE and T'm polarization
$\mathrm{r}_{\mathrm{S}}=\frac{\sqrt{1+\alpha^{2}} \cos \theta i-i \alpha \sin \theta i}{\sqrt{1+\alpha^{2}} \cos \theta i+i \alpha \sin \theta i}=e^{i \Phi S}$
$\mathrm{r}_{\mathrm{p}}=\frac{\sin \theta i \cos \theta i-i \propto \sqrt{1+\alpha^{2}}}{\operatorname{Sin} \theta i \operatorname{Cos} \theta i+i \propto \sqrt{1+\alpha^{2}}}=e^{i \Phi p}$
- The phase of the light for TE and TM polarization are
$\varphi_{s}=2 \tan ^{-1} \frac{\alpha \sin \theta i}{\sqrt{1+\alpha^{2}} \cos \theta i}$
$\varphi_{p}=2 \tan ^{-1} \frac{\alpha \sqrt{1+\alpha^{2}}}{\sin \theta i \cos \theta i}$

Where:

$$
\propto=\sqrt{\left(\frac{\sin \theta_{i}}{\sin \theta_{c}}\right)^{2}-1} \quad ; \theta c=\sin ^{-1}\left(\frac{n t}{n i}\right)
$$

Problem 15: Compute the reflectance of Copper for wavelength $\lambda=1 \mathrm{~mm}$ and 1 nm at normal incident.

Solution:

a) $R \cong 1-\left(\frac{8 \omega \epsilon_{0}}{\sigma}\right)^{1 / 2}$

From table $\sigma_{\text {cop }}=5.8 \times 10^{7}(\Omega . \mathrm{m})^{-1}$
$R \cong 1-\left(\frac{8(2 \pi f) \epsilon_{0}}{\sigma_{c o p}}\right)^{1 / 2}$
$\omega=2 \pi \mathrm{f}=2 \pi \mathrm{c} / \lambda=2 \pi \mathrm{c} / 10^{-3}=1.884 \times 10^{12} \mathrm{~Hz}$
$\mathrm{R}=1-1.51 \times 10^{-3}=0.998$
b) $\omega=\frac{2 \pi c}{10^{-6}}=1.88 \times 10^{15} H_{Z}$
$\mathrm{R}=1-0.0479=0.952$

Note: in conducting materials reflectivity and absorbability are very high, this make the permeability for this materials very small. Hence the conducting materials are dark to light.

Problem 16: For Aluminum wave length $\lambda=5500 \AA$, $\mathrm{n}=1.15$ and $\mathrm{K}=3.2$ find:
(a) Reflectance, (b) absorption coefficient, and (c) phase change on reflection at normal incident.

Solution:

a) $\mathrm{R}=\frac{(1-n) 2+k^{2}}{(1+n) 2+k^{2}}$
$=\frac{(1-1.15) 2_{+}(3.2) 2}{(1+1.15)+(3.2) 2} \cong 0.69$
b) $\mathrm{k}=\frac{c}{\omega} B \rightarrow$ absorption coefficient
$\mathrm{B}=\frac{\omega}{c} k$
$\omega=2 \pi \mathrm{f}=\pi \frac{c}{\lambda}=3.4 \times 10^{15} \mathrm{H}_{\mathrm{z}}$

$$
B=\frac{3.4 \times 10^{15}}{3 \times 10^{8}}(3.2)=3.655 \times 10^{7}
$$

C) $\varphi_{s}=\tan ^{-1}\left(\frac{2 \mathrm{k}}{1-\mathrm{n}^{2}-\mathrm{k}^{2}}\right)=\tan ^{-1} \frac{2(3.2)}{12.625}$

$$
\varphi_{s} \cong 29^{\circ}
$$

Problem 17: An electric plane wave has a frequency of 90 Hz and amplitude 0.85 V / m. Write the equation for the electric wave and the magnetic wave.

Solution:

$\omega=\mathrm{kc}=2 \pi \mathrm{f}=2 \pi \times 90 \mathrm{~Hz}=180 \pi$
$\mathrm{K}=\frac{\omega}{c}=\frac{180 \pi}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}=60 \pi \times 10^{-8} \mathrm{~m}^{-1}$

The electric plane wave
$\mathrm{E}=\mathrm{E}_{0} \sin (\mathrm{kx}-\omega \mathrm{t})=0.85 \sin \left(60 \pi \times 10^{-8} \times-180 \pi \mathrm{~b}\right) \frac{\boldsymbol{V}}{\boldsymbol{m}}$
The magnetic plane wave
$H=H_{0} \sin (k x-\omega t)=\frac{E_{0}}{\eta} \sin (k x-\omega t)=\frac{\mathbf{0 . 8 5}}{120 \pi} \sin \left(60 \pi \times 10^{8} x-180 \pi t\right) A / m$

References:

[1] F.A. Jenkins, H.E. White, Fundamentals of optics, Tata McGraw-Hill Education, 1957.
[2] G.R. Fowles, Introduction of Modern Physics, 2nd, P152-163, Holt, Rineehart and inston, 1975.
[3] H. Bateman, The Mathematical Analysis of Electrical and Optical Wave-motion on the Basis of Maxwell's Equations: By H. Bateman, University press, 1915.
[4] F.G. Smith, T.A. King, D. Wilkins, Optics and photonics: an introduction, John Wiley \& Sons, 2007.
[5] J. Kraus, Electromagnetics, McGraw-Hill, 1992.
[6] S. Marshall, G.G. Skitek, Electromagnetic Concepts \& Applications, Solutions Manual, Prentice-Hall, 1986.
[7] D.K. Cheng, Fundamentals of engineering electromagnetics, (1993).
[8] J. Peatross, M. Ware, Physics of light and optics, Brigham Young University, Department of Physics, 2011.
[9] D. Fleisch, A student's guide to Maxwell's equations, Cambridge University Press, 2008.
[10] P. Hammond, J.K. Sykulski, Engineering electromagnetism: physical processes and computation, Oxford University Press, 1994.
[11] A.A.-K. Abd - Alaziz, geometrical electromagnetic, first ed., 2005.
[12] L. Xung-Kuo, problems and solutions on optics, second ed., 2002.

