
Data Structures Nada Thanoon

Stack
 A stack is an ordered collection of items into which new items may be inserted and from which items

may be deleted at one end, called the top of the stack.

The definition of the stack provides for the insertion and deletion of items, so that a stack is a dynamic

constantly changing object. The definition specifies that a single end of the stack is designated as the

stack top. New items may be put on top of the stack, or items which are at the top of the stack may be

removed.

In the figure below, F is physically higher on the page then all the other items in the stack, so F is the

current top element of the stack, If any new items are added to the stack they are placed on top of F,

and if any items are deleted, F is the first to be deleted. Therefore, a stack, is collected

a Last – In – First – Out. (LIFO) list.

F

E

D

C

B

A

Operations on a stack

 The two main operations which can be applied to a stack are given spatial names, when an item is

added to a stack, it is push onto the stack, and when an item is removed, it is pop from the stack.

 Given a stack s, and an item i, performing the operation Push (i) adds the item i to the top of stack

s. similarity, the operation pop() removes the top element and returns i as a function value. Thus the

assignment operation i = Pop(); removes the element at the top below is a motion picture of a stack s

as it expands (items pushed) and shrinks (item poped) with the passage of item.

Data Structures Nada Thanoon

E

 D D D F

C C C C C C

B B B B B B B

A A A A A A A

Stack s Push(C) Push(D) Push(E) POP() POP() Push(F)

The original idea of the stack is that there is no upper limit on the number of items that may be kept

in a stack. Pushing another item onto a stack produces a larger collection of items. When the stack

been implemented in a program represented as an array, therefore we need to give the maximum size

of this stack to be shrieked. So, we need as operation called IsFull () (which determines whether or

not a stack is full (overflow) to be applied before Push operation). On the other hand, if a stack

contains a single item and the stack is poped, the resulting stack contains no item and is called an

Empty stack.

Therefore, before applying the pop operator to a stack, we must ensure that a stack is not empty. The

operation IsEmpty () determine whether or not a stack is empty.

Another operation that can be performed on a stack is to determine what the top item on a stack is

without removing it. This operation is written Peek () and return the top element of stack s.

i= Peek ();

The Stack Abstract Data Type

Class specification :

Stack

-top:int

- StackSize:int

- items:object[];
+Stack(int)

+Push (object):void

+Pop():object

+Peek():object

+IsFull():bool

+IsEmpty():bool

+Size():int

Data Structures Nada Thanoon

A stack Stack is an abstract data type (ADT) that supports the following three methods

ADT : Stack

 {

 Data: a non zero positive integer number representing StackSize and integer number representing

the top of stack , and array of object elements represent the items .

 Operations:

 A constructor(Stack) :initialize the data to some Data object certain value.

 Push(element) : insert object element at the top of the stack.

 Input: object; Output: None.

 Pop() : Remove from the stack and return the top object on the stack; an error occurs if the stack

is empty .

 Input: None ; Output: Object;

 Peek() : Return the top object on the stack; without removing it; an error occurs if the stack is

empty .

 Input: None ; Output: Object;

Additionally, let us also define the following supporting methods :

 IsEmpty() : Return a Boolean indicating if the stack is empty .

 Input: None; Output : Boolean.

 IsFull() : Return a Boolean indicating if the stack is full .

 Input: None; Output : Boolean.

 Size(): return the number of objects in the stack .

 Input : None; Output: integer;

End ADT Stack

 class Stack

 {

// data member or data value

 private int top , StackSize;

 private object[] items;

// operations

// Constructer or default Constructer

 public stack(int n)

 {

 StackSize = n;

 items = new object[StackSize];

 top = -1;

 }

Data Structures Nada Thanoon

The pseudocode IsEmpty () is used to test whether a stack is empty, may be written as follow:

 if (top equal -1) return true

 else

 return false

The pseudocode IsFull () that is used to test whether a stack is full, may be written as fellow:

 if (top equal StackSize - 1) return true

 else

 return false;

The Algorithm Push () is used to add a new elements to the top of the stack. This Algorithm must

perform the following operations:

1- If the stack is full, print a warning message and halt execution.

2- Add a new element into the top of the stack.

The pseudocode Push that may be written as fellow:

 if (IsFull())

 print ("Stack is full!")

 else

 {

 top←top+1

 items[top] ← element

 }

The Algorithm Pop that is used to remove the element on the top of the stack, must perform the

following three actions:

1- If the stack is empty, print a warning message and halt execution.

2- Remove the top element from the stack.

3- Return this element to the calling program.

Data Structures Nada Thanoon

The pseudocode Pop that may be written as fellow:

 if (IsEmpty())

 print "Stack is empty!"

 else

 {

 ele←items[top]

 top← top-1

 }

The Algorithm Peek which returns the top element of a stack without removing it from the stack,

must perform the following Two actions:

1- If the stack is empty, print a warning message and halt execution.

2- Return the top element from the stack to the calling program.

The pseudocode Peek may be written as follows:

 if (IsEmpty())

 print "Stack is empty!"

 else

 ele ← items[top]

The Method Size() which returns the number of elements in the stack :

 return top;

The Method Display() which Display all elements in the stack

 if (isEmpty())

 print "Stack is empty!"

 else

 {

 for (int i = top; i > -1 ; i--)

 print items[i]

 }

Data Structures Nada Thanoon

The table show the running times of methods in realization of a stack by an array

Method Time

Size O(1)

isEmpty O(1)

isfull O(1)

push O(1)

pop O(1)

peek O(1)

Display O(n)

Applications of stacks

1- Check for balancing of parenthesis.

2- Convert infix expression to postfix.

3- Evaluate postfix expression.

4- Use of Stack in Function calls.

5- Check for palindrome strings

1-Check for balancing of parenthesis.

 A stack is useful here because we know that when a closing symbol such as) is seen , it matches

the most recently seen unclosed (. therefore , by placing an opening symbol on a stack, we can

easily determine whether a closing symbol makes sense. Specifically , we have the following

algorithm .

1- Make an empty stack.

2- Read symbols until the end of the file .

a- If the symbol is an opening symbol , push it onto the stack.

b- If it is a closing symbol, do the following:

i- If the stack is empty , report an error

ii- Otherwise ,pop the stack

- if the symbol popped is not the corresponding opening symbol, report an error

- else we continue.

 3- At the end of the file , if the stack is not empty , report an error.

figure below , shows the state of the stack after reading in parts of the string :

{X+(Y-[a+b])*c}

[

 (((

Data Structures Nada Thanoon

{ { { { {

{…

push

{x+(…

push

{x+(y-[…

push

{x+(y-[a+b]…

pop

{x+(y-[a+b]…

pop

{x+(y-[a+b]*c}

pop

2-Convert infix expression to postfix expression

 Infix, Postfix , and prefix Expressions
 Consider the sum of A and B. we think of applying the operator + to the operands A and B and write

the Sum as A+B . This particular representation is called infix . There are two alternate notations for

expressing the Sum of A and B using the symbols A, B and + . These are

+ A B prefix , A B + postfix

In prefix notation the operator precedes the two operands , in postfix notation the operator follows the

two operands , and in infix notation the operand is between the two operands. The evaluation of the

expression A+B*c, as written in standard infix notation , require Knowledge of which of the two

operations + or * is to be performed first. In the case of + and * we Know that mutilation is to be done

before addition . Thus A+B*c is interpreter As a A+ (B*C) .

For the Same example , if we want need to write the expression as (A+B)*C .Therefore , Infix notation

may require parentheses to specify a decimal or of operations. Using postfix and prefix notation , the

notation, the need for parentheses is eliminated because the operator is placed directly after (before)

the two operands to which it applied .

To convent infix expression to postfix forms ,we use the following algorithm :

1- Completely parenthesize the infix expression with order of priority.

2- Move each operator to the space hold by its corresponding right parenthesis.

3- Remove all parentheses.

We can apply this algorithm to the expression :

A / B*C + D*E – A*C

(((A / B) * C) + (D*E)) – (A * C))

AB/C* DE*+AC*-

The conversion algorithm for infix to prefix specify that , after compactly parenthesizing the infix

expression with order of priority , we move each operator to its corresponding left parenthesis .

And after that , delimiting all parentheses For example :-

A / B*C + D*E – A*C

(((A / B) * C) + (D*E)) – (A * C))

 -+ * /ABC*DE*AC

Data Structures Nada Thanoon

In the above example , we have consider four binary operations : addition , subtraction , multiplication

and division. The available in C# and are dented by the usual operators + ,- , *. / .The following is

the order of precedence (highest to lowest) :

Multiplication / division / And

Addition / Subtraction /OR

-Convert infix expression to postfix expression uses one stack

To correct an infix expression to postfix for, we will use an algorithm that uses one stack The

description of the algorithm is as follows:

 1-Read the character from the infix expression until the end of the file.

 2- Test the character.:

 - If the character is an operand, add it to the postfix string.

 - If the character is an left parenthesis , push it to the stack1.

 - If the character is a right parenthesis then pop entries from the stack add them to the postfix

string until a left parenthesis is poped. Discovered both left and right parenthesis.

 - If the character is a #(end of the expression) , pop all entries that remain in the stack add

them to postfix string.

 - Otherwise, pop from the stack and add to postfix the operator that have stack priority greater

than or equal to the infix priority of the read character, then push the read character to the opstack.

 Example

Convert the following infix expression to postfix using one stack:

A + (B /C) #

Ch Opstack Postfix (output string) Commentary

A A Add ch to postfix

+ + A Push ch to opstack

(+(A Push ch to opstack

B +(AB Add ch to postfix

/ +(/ AB Push ch to opstack

C +(/ ABC Add ch to postfix

) + ABC/ Pop and add to postfix until

(is reached.

Data Structures Nada Thanoon

or end of

expression

 ABC/+ Pop and add to postfix until

the opstack is empty.

Example

Convert the following infix expression to postfix using one stack;

((A – (B + C)) * D) / (E +F) #

Ch Opstack Postfix

Output string

Commentary

(

 (

 Push ch to opstack

(

((

 Push ch to opstack

A

 ((

A

Add ch to postfix

_

((-

A Push ch to opstack

(

((- (

A

Push ch to opstack

B

((- (

AB Add ch to postfix

+

((- (+

AB

Push ch to opstack

C

((- (+

ABC Add ch to postfix

)

((-

ABC+ Pop and add to postfix until (is reached

)

(

ABC+- Pop and add to postfix until (is reached

*

(*

ABC+- Push ch to opstack

D (* A B C + -D Add ch to postfix

)

(* ABC+ - D* Pop and add to postfix until (is reached

/

/

A B C +-D * Push ch to opstack

(

 /(

A B C + -D *

Push ch to opstack

E

/ (

A B C+-D*E

Add ch to postfix

+

/ (+

ABC+-D*E Push ch to opstack

F / (+

ABC+-D*E F Add ch to postfix

)

/

A B C + - D * E F + Pop and add to postfix until (is reached

Data Structures Nada Thanoon

or end of

expression

 A B C + - D * E F +/ Pop and add to postfix until the opstack is

empty.

-Convert infix expression to postfix expression using two stacks

 To correct an infix expression to postfix for, we will use an algorithm that using two stacks The

description of the algorithm is as follows:

 1-Read the character from the infix expression until the end of the file.

 2-Test the character.

 - If the character is an operand, push it to the stack1.

 - If the character is an left parenthesis , push it to the stack1.

 - If the character is a right parenthesis then pop entries from the stack2 and push them to the

stack1 until a left parenthesis is poped. Discovered both left and right parenthesis.

 - If the character is a #(end of the expression) , pop all entries that remain in the stack2 and push

them to stack1.

 - Otherwise, pop from the stack2 and push to stack1 the operator that have stack priority greater

than or equal to the infix priority of the read character, then push the read character to the stack2.

Example

Convert the following infix expression to postfix using two stack: a-b*(c+d)/(e-f) #

Ch Stack2 Stack1 Commentary

A A Push ch to stack1

- - A Push ch to stack2

B - ab Push ch to stack1

* -* ab Push ch to stack2

(-*(ab Push ch to stack2

C -*(abc Push ch to stack1

+ -*(+ abc Push ch to stack2

D -*(+ abcd Push ch to stack1

) -* abcd+ Pop ch from stack2 and push them into stack1 until (is reached.

/ -/ abcd+* Push ch to stack2

(-/(abcd+* Push ch to stack2

E -/(abcd+*e Push ch to stack1

Data Structures Nada Thanoon

- -/(- abcd+*e Push ch to stack2

F -/(- abcd+* ef Push ch to stack1

) -/ abcd+*ef- Pop ch from stack2 and push them into stack1 until (is reached.

or end of

expression

 abcd+*ef-/- Pop ch from stack2 and push them into stack1 until the

stack2 is empty.

3-Evaluate postfix expression(complier)

 We consider evaluating postfix expression using one stack . we will use an algorithm that using

one stack The description of the algorithm is as follows:

 1-Read the character from the postfix expression until the end of the file.

 2-Test the character.

 - If the character is an operand, push the value associational with it onto the stack .

 - If the character is an operator , pop two values from the stack, copy the operator to them, and

 push the result back onto the stack.

As an example , Execute the following postfix notation using one stack:

623 + - 382 / + * 2 * 3 +

3 8

2 2 5 3 3

6 6 6 6 1 1 1

Read

6

Read 2 Read 3 Read + Read - Read 3 Read 8

2

8 4

Data Structures Nada Thanoon

3 3 7 2 3

1 1 1 7 7 14 14

Read

2

Read / Read + Read * Read 2 Read * Read 3

17

Read +

Evaluate infix expression (interpreters using two stacks)
Example

Execute the following infix notation using the two stack : 3+7*2-6

Ch Stack1(operation) Stack2(operant) Commentary

3 3 Push ch to stack2

+ + 3 Push ch to stack1

7 + 7

3

push ch to stack2

* *

+

7

3

Push ch to stack1

2 *

+

2

7

3

push ch to stack2

- +

14

3

Pop stack1 (*)

Pop stack2(2)

Pop stack2 (7)

7*2= 14 push 14 to stack2

 - 17 Pop stack1 (+)

Pop stack2 (14)

Pop stack2 (3)

3+14 = 17 push 17 into stack2

Push ch to stack1 (-)

6 - 6

17

Push ch to stack2

or end of

expression

- 11

Pop stack1 (-)

Pop stack2 (6)

Pop stack2 (17)

Data Structures Nada Thanoon

17-6= 11 push 11 to stack2

4-Use of Stack in Function calls

 Whenever a function begins execution, an activation record is created to store the current

environment for that function

 Current environment includes the

o values of its parameters,

o contents of registers,

o the function’s return value,

o local variables

o address of the instruction to which execution is to return when the function finishes

execution (If execution is interrupted by a call to another function)

 Functions may call other functions and thus interrupt their own execution, some data structure

must be used to store these activation records so they can be recovered and the system can be

reset when a function resumes execution.

 It is the fact that the last function interrupted is the first one reactivated

 It suggests that a stack can be used to store these activation records

 A stack is the appropriate structure, and since it is manipulated during execution, it is called

the run-time stack

Consider the following program segment

static void Main(string[] args)

{

 int a=3;

 int s1= f1(a);

}

int f1(int x)

{

 int s =(f2(x+1)) ;

}

int f2(int p)

{

 int q=f3(p/2);

 return 2*q;

}

int f3(int n)

{

 return n*n+1;

}

Run-time Stack

Parameters function value local variable return address

 a 3 OS

Data Structures Nada Thanoon

 OS denotes that when execution of main() is completed, it returns to the operating system

When a function is called …

 Copy of activation record pushed onto run-time stack

 Arguments copied into parameter spaces

 Control transferred to starting address of body of function

 Function call f2 (x + 1)

top P 4 q B AR for f2()

AR for f1()

AR for main()
x 3 A

 a 3 OS

The output

10

5-Check for palindrome strings

We have the following pseudocode.

Make an empty stack1 and stack2.

Initialize palindrome=True

Read symbols and push it into stack1 until the end of the string.

le= Size(); // find the number of item in the stack (top)

Let m= le divided by 2.

For (i=0, i< m ; i++)

{

 pop character from stack1

 push character into stack2

 }

If(m%2 == 1) pop character from stack1

While (!emptystack1 and palindrome)

 {

Pop ch1 from stack1

Pop ch2 from stack2 or if (stack1 equal stack 2)

if(ch1!=ch2) print "the string is palindrome";

palindrome=False else

 } print "the string is not palindrome";

 if(palindrome)

 print "the string is palindrome";

 else

 print"the string is not palindrome;

Data Structures Nada Thanoon

Exercises:

Q1:Let Stack be a stack of size (15) integer numbers , write C# program that push a list of integer

numbers into stack and print this list in reverse order?

Q2: Let S for push an element in the stack, and U for pop element from the stack.If the order of

stack input stream is 1 2 3 4 5

 a- What is the output if we execute the following operations : SSUUSSSUUU

 b- Which of the following permutations can be obtained as output stream (explain the reason for

each case).

i- 51324

ii- 23514

iii- 32154

Q3: If the stack input stream is A B C D E F what is the sequence of operations to get the out put

C B D E F A?

Q4- Write a function to check if the stack St is empty.

Q5- State the main applications of the stack?

Q6– Convert the following infix expressions into postfix notations using two stacks:

i- a+b*2/4-(c*5/8-f) +3

ii- m+3 or n-b/2 and (m+n)

Q7– Convert the following infix expressions into postfix notations using one stacks:

i- a+b+c*(-d/3+4)- f

ii- a+(b/2)or(x+y/3-w)and (c-2)*3

iii- x*n+(m-p*4)-f and (-b)+2/c+6

Q8- Execute the following postfix notation using the stack

ab*cde*/+ when a=5, b=6,c=8,d=2,e=2

Q9- Execute the following infix notation using the stack

 a+(b+c/2)*4+m if a=10,b=8,c=4,m=20

Q10- Write a procedure that reads in a string and print its characters in reverse order (note: the string

terminator is a "." . Which should not be printed as a part of the reversed string).

Q11- Consider the following psedocode:

 Declare a stack of characters

 while(there are more characters in the word to read)

 {

 read a character

 if non blank character

Data Structures Nada Thanoon

 push the character on the stack

 }

 while (the stack is not empty)

 {

 pop a character off the stack

 write the character to the screen

 }

 What is written to the screen for the input "My Test"

