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Chapter 1

Introduction to Error-Correcting

Codes

Motivation This theory shows how to solve a practical problem using the well-established
mathematical tools of Linear Algebra and Finite Fields.

Difference from Cryptography Coding Theory and Cryptography are two important
parts of the modern theory of Information Science.

Cryptography, which is some 2000 years old, is the mathematical theory of sending
secret messages.

Coding Theory, which only dates from 1948, is the mathematical theory of sending
messages that arrive with the same content as when they were sent.

Example 1.1. To send just the two messages YES and NO, the following encoding suffices:

YES = 1, NO = 0.

If there is an error, say 1 is sent and 0 arrives, this will go undetected. So, add some
redundancy:

YES = 11, NO = 00.

Now, if 11 is sent and 01 arrives, then an error has been detected, but not corrected, since
the original messages 11 and 00 are equally plausible.

So, add further redundancy:

YES = 111, NO = 000.

Now, if 010 arrives, and it is supposed that there was at most one error, we know that 000
was sent: the original message was NO.

Note that the information is still in the first symbol; the other two are purely for
error-correction!

The philosophy Error correction codes are used to correct errors when messages are
transmitted through a noisy communication channel.

The channel may be a telephone line, a high frequency radio link or a satellite com-
munication link.

The noise may be human error, lightning, equipment faults, etc.
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The object of a code is to encode the data by adding a certain amount of redundancy so
that the original message can be recovered if not too many errors occur in the transmission.

message
source

message

- encoder

codeword
-

noise
?

channel

received
vector

- decoder

decoded
message

- user

In Example 1.1,

message =
YES or NO

NO
- YES = 111

NO = 000

000
-

noise
?

channel

010
- 010 →

000

NO
- user

Definition 1.2. A binary code is a set of sequences of 0’s and 1’s; each sequence is a
codeword.

In Example 1.1, the code is {000, 111} . This is a binary repetition code of length 3.

Definition 1.3. (1) A q-ary code C is a set of sequences where each symbol is from a set
Fq = {λ1, . . . , λq}. Usually, Fq is a finite field.

(2) A 2-ary code is a binary code; a 3-ary code is a ternary code.

Example 1.4. The set of all words in the English language is a code over the 26-letter
alphabet {A, B, . . . , Z}. The codewords are not all the same length.

Definition 1.5. A q-ary code C of length n is a subset of (Fq)
n.

Example 1.6. The set of all 11-digit telephone numbers in the UK is a 10-ary code of
length 11. It is not designed for error-correcting, with area codes being important. However,
it would be possible to allow for a single misdial to be corrected.

Example 1.7. On a map laid out as a grid, HQ and JB have identical maps. For JB to return
to HQ, a message is transmitted in terms of the instructions N, E, W, S. The message is

E N N N N W W W W W N N N N E.
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The shortest binary code is

C1 =
{ 00, 01, 10, 11 }

N E W S
.

This code does not allow for errors; so add an extra digit, namely a parity check :

C2 =
{ 000, 011, 101, 110 }

N E W S
.

This will detect an error. So JB could ask for another transmission if he received, say, 010.
However, this code would not correct the error, since N, E, S are all messages with only one
digit different from 010. So use

C3 =
{ 00000, 01101, 10110, 11011 }

N E W S
.

If the received message is 01100, then it has two digits different from N , one digit different
from E, three digits different from W , and four digits different from S; so it is decoded as
E = 01101.

Definition 1.8. For x, y ∈ (Fq)
n, the (Hamming) distance d(x, y) is the number of coordi-

nates in which they differ: that is, if

x = x1x2 · · ·xn,

y = y1y2 · · · yn,

then
d(x, y) = |{i | xi 6= yi}| .

Example 1.9. In C3,

d(N, E) = d(N, W ) = 3, d(N, S) = 4,

d(E, W ) = 4, d(E, S) = d(W, S) = 3.
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Theorem 1.10. The Hamming distance is a metric.

Proof (i) d(x, y) = 0 ⇐⇒ x = y.

By definition, d(x, y) = 0 ⇐⇒ xi = yi all i ⇐⇒ x = y.

(ii) d(x, y) = d(y, x) by definition.

(iii) d(x, y) ≤ d(x, z) + d(z, y).

Here, d(x, y) is the minimum number of changes of coordinates of x to make it y. But a
change from x to z requires d(x, z) changes of coordinates and changing z to y requires
d(z, y) coordinate changes. Hence d(x, y) ≤ d(x, z) + d(z, y). �

Definition 1.11. The minimum distance of a q-ary code C of length n is

d(C) = min{d(x, y) | x, y ∈ C; x 6= y}.

In Example 1.7, d(C1) = 1, d(C2) = 2, d(C3) = 3.

Definition 1.12. Nearest neighbour decoding
Send x, receive y. Then, choose x′ ∈ C such that d(x′, y) is minimum.

This strategy depends on two assumptions:

(1) each symbol has the same probability t (< 1

2
) of being wrongly received;

(2) if a symbol is wrongly received, then each of the q − 1 errors is equally likely.

Example 1.13. In a binary code of length n,

P (exactly i errors in specified positions) = ti(1 − t)n−i.

Since this is greatest for i = 0, so nearest neighbour decoding is also maximum likelihood
decoding.

Example 1.14. C = {000, 111}, the binary repetition code of length 3.
Suppose 111 is transmitted. Then the received words decoded as 111 are

111, 011, 101, 110.

So
P (decoding as 111) = (1 − t)3 + 3t(1 − t)2.

Suppose that t = 0.1, that is, one symbol in 10 is wrong. So

P (correct decoding) = 0.93 + 3 × 0.1 × 0.92

= 0.729 + 0.243 = 0.972;

P (incorrect coding) = 0.028.

It will be shown, for linear codes, that P (incorrect coding), that is, the word error
probability, is independent of the codeword sent.

Definition 1.15. A code is e-error correcting if it can correct e errors.
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Definition 1.16. A q-ary (n, M, d) code or (n, M, d)q code is a code C of length n, cardinality
M = |C| and minimum distance d over the alphabet Fq.

In Example 1.7,

C1 is a binary (2, 4, 1) code or (2, 4, 1)2 code;

C2 is a binary (3, 4, 2) code or (3, 4, 2)2 code;

C3 is a binary (5, 4, 3) code or (5, 4, 3)2 code.

Definition 1.17. For x0 ∈ (Fq)
n and r ∈ Z, r ≥ 0, the ball of centre x0 and radius r is

S(x0, r) = {x ∈ (Fq)
n | d(x0, x) ≤ r} .

Example 1.18. (1) In (F2)
3 with F2 = {0, 1},

S(000, 1) = {000, 100, 010, 001} .

(2) In (F3)
3, with F3 = {0, 1, 2},

S(000, 1) = {000, 100, 200, 010, 020, 001, 002} .

Theorem 1.19. Let C be a code in (Fq)
n.

(i) If d(C) ≥ s + 1, then C can detect up to s errors.

(ii) If d(C) ≥ 2e + 1, then C can correct up to e errors.

Proof (i) Let d(C) = s+1. If x ∈ C is sent and s mistakes occur in transmission, then the
received vector cannot be a codeword. So the mistakes are detected.

(ii)
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Let d(C) = 2e + 1.
If x ∈ C is sent and y received with at most e errors, then d(x, y) ≤ e. If x′ ∈ C with

x′ 6= x, then d(x, x′) ≥ 2e + 1.
Suppose that d(x′, y) ≤ e, then d(x, x′) ≤ d(x, y)+d(x′, y) ≤ 2e. Hence d(x′, y) ≥ e+1.

So y → x. Hence C can correct e errors. �

Corollary 1.20. If C has minimum distance d, then it can detect d − 1 errors and correct
e = ⌊(d − 1)/2⌋ errors, where ⌊m⌋ denotes the integer part of m:

d 1 2 3 4 5 6 7 8
e 0 0 1 1 2 2 3 3

Definition 1.21. The q-ary repetition code of length n on Fq = {λ1, ..., λq} is

{λ1 . . . λ1, λ2 . . . λ2, . . . , λq . . . λq}.

This is an (n, q, n) code.

5



Example 1.22. (1) To send back photographs from the 1972 Mariner to Mars, a binary
(32, 64, 16) code was used. Here, 32 = 6 + 26, with 6 information symbols and 26
redundancy symbols. So each part of each photograph was coded in one of 26 = 64
shades of grey; 7 errors for each part could be corrected.

(2) For the 1979 Voyager spaceship to Jupiter, a binary (24, 642, 8) code was used. This
time, 24 = 12 + 12, with 12 information symbols and 12 redundancy symbols. So each
part of each photograph was coded in one of 212 = 642 = 4096 shades to send back
colour photographs, with 3 errors able to be corrected.

Example 1.23 (Morse Code as used by the British Army).

0 = .

1 = −

A 01 W 011
B 1000 X 1001
C 1010 Y 1011
D 100 Z 1100
E 0 0 1
F 0010 1 01
G 110 2 001
H 0000 3 00011
I 00 4 00001
J 0111 5 0
K 101 6 1000
L 0100 7 11000
M 11 8 100
N 10 9 10
O 111
P 0110
Q 1101
R 010
S 000
T 1
U 001
V 0001
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