Classification of The Projective Line of Order Nineteen and its Application to Error-Correcting Codes By Emad Bakr Al-Zangana

Seminar at University of Mustansiriyah 26–2–2017

- Let V(n+1,q) be the n+1 dimensional vector space over the Galois field F_q .
- Let $X = \langle x_0, ..., x_n \rangle$, $Y = \langle y_0, ..., y_n \rangle \in V \setminus \{0\}$ X is equivalent to Y if X = tY for some t in $F_q \setminus \{0\}$.
 - Then the set of equivalence classes is the

n-dimensional projective space over F_q and is denoted by PG(n,q).

Real Projective Line

We have Two descriptions of the real projective line, defined to be the space of lines in the Euclidean plane through a fixed point.

The projective lines looks like a circle.

Real projective line

Algebraic representation of Projective line

When the field is finite of order q

Each point $P(t_0, t_1)$ with $t_1 \neq 0$ in PG(1,q) is determined by the non-homogeneous coordinate t_0/t_1 ; the coordinate for P(1, 0) is ∞ So, the points of PG(1,q) can be represented by the set $F_q \cup \{\infty\}$.

Example: Codings of a path avoiding an enemy territory

NNWNNWWSSWWNNNWWN

Three ways to encode the safe route from Mohammad to Ahmmed are:

Any error in the code word would be a disaster.

 $N=00 \longrightarrow 10$

2. $C_2 = \{000, 011, 101, 110\}$ A single error in encoding each of symbols N, W, S, E could be detected. N=000 \longrightarrow 100 (000 or 101 or 110) 3. $C_3 = \{00000, 01101, 10110, 11011\}$

A single error in decoding each of symbols N, W, S, E could be corrected.

 $N=00000 \longrightarrow 11000$ d(N,11000)=2 d(W,11000)=3 d(E,11000)=3 d(S,11000)=2 $N=00000 \longrightarrow 10000 \text{ decode as N.}$ We can generate C_3 by the matrix G

$$G = \begin{bmatrix} \mathbf{W} \\ \mathbf{E} \end{bmatrix} = \begin{bmatrix} 01101 \\ 10110 \end{bmatrix}$$

- A projective linear code C, $[n,k,d]_q$ code, is a subspace of V(n+1,q) where $k = \dim C$, $d = d(C) = \min\{|\{i \mid x_i \neq y_i\}|\}$ $d \le n-k+1$
- and any two columns of a generator matrix G are linearly independent, where G is a $k \times n$ matrix having as rows the vectors of a basis of C. If d = n - k + 1, then C is called *maximum distance separable codes* (*MDS code*).
- A code with minimum distance at least d = 2e+1 can correct up to *e* errors. This type of code is called an *e-error correcting code*.

Relation Between Projective Code and Projective Space

Theorem: There exists a projective $[n,k,d]_q$ -code if and only if there exists an (n ; n-d)-arc in PG(k-1,q). If *K*=2 then $n-d \le n-(n-k+1)=k-1=1$.

We have (n ; 1) -arc in PG(1,q); that is, we have *n* distinct point.

Theorem. (The Fundamental Theorem of Projective Geometry)

If $\{P_0, \ldots, P_{n+1}\}$ and $\{P'_0, \ldots, P'_{n+1}\}$ are both subsets of PG(n,q) of cardinality n+2 such that no n + 1 points chosen from the same set lie in a *hyperplane*, then there exists a unique projectivity \Im such that

$$P'_i = P_i \mathfrak{I}$$
 for $i = 0, 1, ..., n+1$.

For n = 1, simplifies: there is a unique projectivity of PG(1,q) transforming any three distinct points on a line to any other three. **Definition:** The cross-ratio $\lambda = \{P_1, P_2; P_3, P_4\}$ of four ordered points (tetrad) $P_1, P_2, P_3, P_4 \in PG(1, q)$ with coordinates t_1, t_2, t_3, t_3 is $\lambda = \{P_1, P_2; P_3, P_4\} = \{t_1, t_2; t_3, t_4, \} = \frac{(t_1 - t_3)(t_2 - t_4)}{(t_1 - t_4)(t_2 - t_3)}$

Under all 24 permutations of $\{P_1, P_2; P_3, P_4\}$ the cross-ratio takes just the six values

$$\lambda, 1/\lambda, (1-\lambda), 1/(1-\lambda), (\lambda-1)/\lambda, \lambda/(\lambda-1).$$

The cross-ratio is quantity that does not change under projective transformations.

Let T be a tetrad with cross-ratio λ . Then T is called

- harmonic (H) if $\lambda = 1/\lambda$ or $\lambda = \lambda/(\lambda 1)$ or $\lambda = (1 \lambda)$
- equivalently $\lambda = (\lambda 1)/\lambda$.
- *neither harmonic nor equianharmonic* (*N*) if the cross-ratio is another value.

The aims of this research are to answer the following questions in PG(1,19):

- 1- How many projectively inequivalent k-sets in PG(1,19) are there and what is the stabilizer group of each one?
- 2– Where D_i is 10–set and D_i^c its complement.
- Are D_i and D_i^c equivalent? What is the group of projectivities of PG(1,19) of the partition?
- 3- Does the projective line split into five disjoint harmonic tetrads, five equianharmonic tetrads, and five tetrads of type N_1 or five tetrads of type N_2 ?

Also, the relation between a projective MDS codes of dimension two and k-sets on PG(1,19) is given.

Classification of The Projective Line PG(1,19)

- On PG(1,19), there are 20 points.
- There is a harmonic tetrad $H = \{\infty, 0, 1, a\}$ for a = -1, 2, -9.
- There is an equianharmonic tetrad $E = \{\infty, 0, 1, b\}$ for b = -7, 8.
- There are two tetrads of type N

$$N_1 = \{\infty, 0, 1, c\}$$
 for $c = -2, 3, -6, 7, -8, 9;$
 $N_2 = \{\infty, 0, 1, d\}$ for $d = -3, 4, -4, 5, -5, 6.$

Theorem: On PG(1,19), the number of inequivalent *k*-sets are

- (1) Four projectively distinct 4-sets.
- (2) Five projectively distinct 5-sets.
- (3) Thirteen projectively distinct 6-sets.
- (4) Eighteen projectively distinct 7-sets.
- (5) Thirty one projectively distinct 8-sets.
- (5) Thirty three projectively distinct 9-sets.
- (6) Forty four projectively distinct 10-sets.

Theorem. The projective line PG(1,19) has

- (1) twenty eight projectively distinct partitions into two equivalent 10-sets;
- (2) sixteen projectively distinct partitions into two inequivalent 10-sets.
- <u>Theorem</u>: The projective line PG(1,19) split into five disjoint harmonic, equianharmonic, tetrads of type N_1 and five tetrads of type N_2 .

The End