
Cryptography and
Network Security

Sixth Edition

by William Stallings

Chapter 7
Pseudorandom Number

Generation and Stream Ciphers

“The comparatively late rise of the theory of
probability shows how hard it is to grasp, and the
many paradoxes show clearly that we, as humans,
lack a well grounded intuition in this matter.”

“In probability theory there is a great deal of art in
setting up the model, in solving the problem, and in
applying the results back to the real world actions
that will follow.”

— The Art of Probability,

Richard Hamming

Random Numbers

• A number of network security algorithms and
protocols based on cryptography make use of random
binary numbers:
• Key distribution and reciprocal authentication schemes
• Session key generation
• Generation of keys for the RSA public-key encryption

algorithm
• Generation of a bit stream for symmetric stream

encryption

There are two distinct
requirements for a

sequence of random
numbers:

Randomness

Unpredictability

Randomness

• The generation of a sequence of allegedly
random numbers being random in some well-
defined statistical sense has been a concern

Two criteria are used to validate that a
sequence of numbers is random:

Uniform distribution

•The frequency of occurrence of ones and zeros should
be approximately equal

Independence

•No one subsequence in the sequence can be inferred
from the others

Unpredictability

• The requirement is not just that the sequence of
numbers be statistically random, but that the
successive members of the sequence are
unpredictable

• With “true” random sequences each number is
statistically independent of other numbers in the
sequence and therefore unpredictable
• True random numbers have their limitations, such as

inefficiency, so it is more common to implement
algorithms that generate sequences of numbers that
appear to be random

• Care must be taken that an opponent not be able to
predict future elements of the sequence on the basis of
earlier elements

Pseudorandom Numbers

• Cryptographic applications typically make use
of algorithmic techniques for random number
generation

• These algorithms are deterministic and
therefore produce sequences of numbers that
are not statistically random

• If the algorithm is good, the resulting
sequences will pass many tests of randomness
and are referred to as pseudorandom numbers

True Random Number
Generator (TRNG)

• Takes as input a source that is effectively random

• The source is referred to as an entropy source and is
drawn from the physical environment of the computer
• Includes things such as keystroke timing patterns, disk

electrical activity, mouse movements, and instantaneous
values of the system clock

• The source, or combination of sources, serve as input to
an algorithm that produces random binary output

• The TRNG may simply involve conversion of an analog
source to a binary output

• The TRNG may involve additional processing to
overcome any bias in the source

Pseudorandom Number
Generator (PRNG)

• Takes as input a fixed value,
called the seed, and produces a
sequence of output bits using a
deterministic algorithm
• Quite often the seed is generated

by a TRNG

• The output bit stream is
determined solely by the input
value or values, so an adversary
who knows the algorithm and
the seed can reproduce the
entire bit stream

• Other than the number of
bits produced there is no
difference between a PRNG
and a PRF

Pseudorandom
number generator

•An algorithm that is
used to produce an
open-ended sequence
of bits

•Input to a symmetric
stream cipher is a
common application
for an open-ended
sequence of bits

Pseudorandom
function (PRF)

•Used to produce a
pseudorandom string
of bits of some fixed
length

•Examples are
symmetric encryption
keys and nonces

Two different forms of PRNG

PRNG Requirements

• The basic requirement when a PRNG or PRF is
used for a cryptographic application is that an
adversary who does not know the seed is
unable to determine the pseudorandom string

• The requirement for secrecy of the output of a
PRNG or PRF leads to specific requirements in
the areas of:
• Randomness

• Unpredictability

• Characteristics of the seed

Randomness

• The generated bit stream needs to appear random
even though it is deterministic

• There is no single test that can determine if a PRNG
generates numbers that have the characteristic of
randomness
• If the PRNG exhibits randomness on the basis of multiple

tests, then it can be assumed to satisfy the randomness
requirement

• NIST SP 800-22 specifies that the tests should seek to
establish three characteristics:
• Uniformity
• Scalability
• Consistency

Randomness Tests

• SP 800-22 lists 15
separate tests of
randomness

Three
tests

Frequency test

•The most basic test
and must be included
in any test suite

•Purpose is to
determine whether
the number of ones
and zeros in a
sequence is
approximately the
same as would be
expected for a truly
random sequence

Runs test

•Focus of this test is the total
number of runs in the sequence,
where a run is an uninterrupted
sequence of identical bits
bounded before and after with a
bit of the opposite value

•Purpose is to determine whether
the number of runs of ones and
zeros of various lengths is as
expected for a random sequence

Maurer’s
universal
statistical test

•Focus is the number
of bits between
matching patterns

•Purpose is to detect
whether or not the
sequence can be
significantly
compressed without
loss of information.
A significantly
compressible
sequence is
considered to be
non-random

Unpredictability

• A stream of pseudorandom numbers should exhibit two forms of
unpredictability:

• Forward unpredictability
• If the seed is unknown, the next output bit in the sequence should be

unpredictable in spite of any knowledge of previous bits in the
sequence

• Backward unpredictability
• It should not be feasible to determine the seed from knowledge of

any generated values. No correlation between a seed and any value
generated from that seed should be evident; each element of the
sequence should appear to be the outcome of an independent
random event whose probability is 1/2

• The same set of tests for randomness also provides a test of
unpredictability
• A random sequence will have no correlation with a fixed value (the

seed)

Seed Requirements

• The seed that serves as input to the PRNG
must be secure and unpredictable

• The seed itself must be a random or
pseudorandom number

• Typically the seed is generated by TRNG

Generation
of

Seed
Input

to
PRNG

Algorithm Design

• Algorithms fall into two categories:
• Purpose-built algorithms

• Algorithms designed specifically and solely for
the purpose of generating pseudorandom bit
streams

• Algorithms based on existing cryptographic
algorithms
• Have the effect of randomizing input data

Three broad categories of cryptographic algorithms are
commonly used to create PRNGs:

• Symmetric block ciphers

• Asymmetric ciphers

• Hash functions and message authentication codes

Linear Congruential Generator
• An algorithm first proposed by Lehmer that is parameterized

with four numbers:

m the modulus m > 0
a the multiplier 0 < a< m

c the increment 0≤ c < m

X0 the starting value, or seed 0 ≤ X0 < m

• The sequence of random numbers {Xn} is obtained via the following
iterative equation:

Xn+1 = (aXn + c) mod m

• If m , a , c , and X0 are integers, then this technique will produce a sequence
of integers with each integer in the range 0 ≤ Xn < m

• The selection of values for a , c , and m is critical in developing a
good random number generator

Blum Blum Shub (BBS)
Generator

• Has perhaps the strongest public proof of its
cryptographic strength of any purpose-built
algorithm

• Referred to as a cryptographically secure
pseudorandom bit generator (CSPRBG)
• A CSPRBG is defined as one that passes the next-bit-

test if there is not a polynomial-time algorithm that,
on input of the first k bits of an output sequence,
can predict the (k + 1)st bit with probability
significantly greater than 1/2

• The security of BBS is based on the difficulty of
factoring n

Table 7.1

Example Operation of BBS Generator

PRNG Using Block Cipher Modes of Operation

• Two approaches that use a block cipher to build a PNRG have gained
widespread acceptance:

• CTR mode (Counter)

Counter mode turns a block cipher into a stream cipher. It generates the
next keystream block by encrypting successive values of a "counter". The
counter can be any function which produces a sequence which is
guaranteed not to repeat for a long time, although an actual increment-by-
one counter is the simplest and most popular.

• Recommended in NIST SP 800-90, ANSI standard X.82, and RFC 4086

• OFB mode(Output Feedback)

The Output Feedback (OFB) mode makes a block cipher into a
synchronous stream cipher. It generates keystream blocks, which are
then XORed with the plaintext blocks to get the ciphertext.

• Recommended in X9.82 and RFC 4086

https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/Stream_cipher
https://en.wikipedia.org/wiki/Keystream
https://en.wikipedia.org/wiki/Stream_cipher
https://en.wikipedia.org/wiki/Keystream
https://en.wikipedia.org/wiki/XOR

Table 7.2

Example Results for PRNG Using OFB

Table 7.3

Example Results for PRNG Using CTR

ANSI X9.17 PRNG
• One of the

strongest PRNGs is
specified in ANSI
X9.17
• A number of

applications
employ this
technique
including
financial security
applications and
PGP

Input

•Two pseudorandom inputs drive the
generator. One is a 64-bit representation
of the current date and time. The other is
a 64-bit seed value; this is initialized to
some arbitrary value and is updated
during the generation process.

Keys

•The generator makes use of three triple
DES encryption modules. All three make
use of the same pair of 56-bit keys, which
must be kept secret and are used only
for pseudorandom number generation.

Output

•The output consists of a 64-bit
pseudorandom number and a 64-bit seed
value.

The algorithm makes use of

triple DES for encryption.

Ingredients are:

Stream Ciphers

Stream Cipher Design
Considerations

•A pseudorandom number generator uses a function that
produces a deterministic stream of bits that eventually repeats;
the longer the period of repeat the more difficult it will be to do
cryptanalysis

The encryption sequence should
have a large period

•There should be an approximately equal number of 1s and 0s

•If the keystream is treated as a stream of bytes, then all of the
256 possible byte values should appear approximately equally
often

The keystream should
approximate the properties of a
true random number stream as

close as possible

•The output of the pseudorandom number generator is
conditioned on the value of the input key

•The same considerations that apply to block ciphers are valid

A key length of at least 128 bits is
desirable

•A potential advantage is that stream ciphers that do not use block
ciphers as a building block are typically faster and use far less
code than block ciphers

With a properly designed
pseudorandom number

generator a stream cipher can
be as secure as a block cipher of

comparable key length

RC4

• Designed in 1987 by Ron Rivest for RSA Security

• Variable key size stream cipher with byte-oriented operations

• Based on the use of a random permutation

• Eight to sixteen machine operations are required per output byte
and the cipher can be expected to run very quickly in software

• Used in the Secure Sockets Layer/Transport Layer Security
(SSL/TLS) standards that have been defined for communication
between Web browsers and servers

• Is also used in the Wired Equivalent Privacy (WEP) protocol and
the newer WiFi Protected Access (WPA) protocol that are part of
the IEEE 802.11 wireless LAN standard

Strength of RC4

A number of papers have been
published analyzing methods of

attacking RC4

• None of these approaches is
practical against RC4 with a
reasonable key length

A more serious problem is that the
WEP protocol intended to provide
confidentiality on 802.11 wireless
LAN networks is vulnerable to a

particular attack approach

• The problem is not with RC4 itself,
but the way in which keys are
generated for use as input

• Problem does not appear to be
relevant to other applications and
can be remedied in WEP by
changing the way in which keys
are generated

• Problem points out the difficulty
in designing a secure system that
involves both cryptographic
functions and protocols that make
use of them

Entropy Sources

• A true random number generator (TRNG) uses a
nondeterministic source to produce randomness

• Most operate by measuring unpredictable natural
processes such as pulse detectors of ionizing radiation
events, gas discharge tubes, and leaky capacitors

• Intel has developed a commercially available chip that
samples thermal noise by amplifying the voltage measured
across undriven resistors

• LavaRnd is an open source project for creating truly random
numbers using inexpensive cameras, open source code, and
inexpensive hardware
• The system uses a saturated CCD in a light-tight can as a

chaotic source to produce the seed; software processes the
result into truly random numbers in a variety of formats

Possible Sources of
Randomness

RFC 4086 lists the following possible sources of

randomness that can be used on a computer to

generate true random sequences:

Sound/video input

The input from a sound digitizer
with no source plugged in or from

a camera with the lens cap on is
essentially thermal noise

If the system has enough gain to
detect anything, such input can
provide reasonable high quality

random bits

Disk drives

Have small random fluctuations in
their rotational speed due to

chaotic air turbulence

The addition of low-level disk seek-
time instrumentation produces a

series of measurements that
contain this randomness

There is also an online service (random.org) which can deliver random sequences securely over the Internet

Table 7.5

Comparison of PRNGs and TRNGs

Summary

• Principles of pseudorandom
number generation
• The use of random numbers

• TRNGs, PRNGs, and PRFs

• PRNG requirements

• Algorithm design

• Pseudorandom number
generators
• Linear congruential generators

• Blum Blum Shub generator

• Pseudorandom number
generation using a block cipher
• PRNG using block cipher modes

of operation

• ANSI X9.17 PRNG

• NIST CTR_DRBG

• Stream ciphers

• RC4
• Initialization of S

• Stream generation

• Strength of RC4

• True random number generators
• Entropy sources

• Comparison of PRNGs and TRNGs

• Skew

• Intel digital random number
generator

• DRNG hardware architecture

• DRNG logical structure

