

Cryptography and Network Security

Sixth Edition by William Stallings

Chapter 9

Public Key Cryptography and RSA

Misconceptions Concerning Public-Key Encryption

- Public-key encryption is more secure from cryptanalysis than symmetric encryption
- Public-key encryption is a general-purpose technique that has made symmetric encryption obsolete
- There is a feeling that key distribution is trivial when using public-key encryption, compared to the cumbersome handshaking involved with key distribution centers for symmetric encryption

Table 9.1

Terminology Related to Asymmetric Encryption

Asymmetric Keys

Two related keys, a public key and a private key that are used to perform complementary operations, such as encryption and decryption or signature generation and signature verification.

Public Key Certificate

A digital document issued and digitally signed by the private key of a Certification Authority that binds the name of a subscriber to a public key. The certificate indicates that the subscriber identified in the certificate has sole control and access to the corresponding private key.

Public Key (Asymmetric) Cryptographic Algorithm

A cryptographic algorithm that uses two related keys, a public key and a private key. The two keys have the property that deriving the private key from the public key is computationally infeasible.

Public Key Infrastructure (PKI)

A set of policies, processes, server platforms, software and workstations used for the purpose of administering certificates and public-private key pairs, including the ability to issue, maintain, and revoke public key certificates.

Source: Glossary of Key Information Security Terms, NIST IR 7298 [KISS06]

Principles of Public-Key Cryptosystems

 The concept of public-key cryptography evolved from an attempt to attack two of the most difficult problems associated with symmetric encryption:

Key distribution

• How to have secure communications in general without having to trust a KDC with your key

Digital signatures

- How to verify that a message comes intact from the claimed sender
- Whitfield Diffie and Martin Hellman from Stanford University achieved a breakthrough in 1976 by coming up with a method that addressed both problems and was radically different from all previous approaches to cryptography

Public-Key Cryptosystems

A public-key encryption scheme has six ingredients:

Plaintext

The readable message or data that is fed into the algorithm as input

Encryption algorithm

Performs
various
transformations on
the
plaintext

Public key

Used for encryptio n or decryptio n

Private key

Used for encryptio n or decryptio


Ciphertext

The scrambled message produced as output

Decryption algorithm

Accepts
the
ciphertext
and the
matching
key and
produces
the
original
plaintext

Public-Key Cryptography

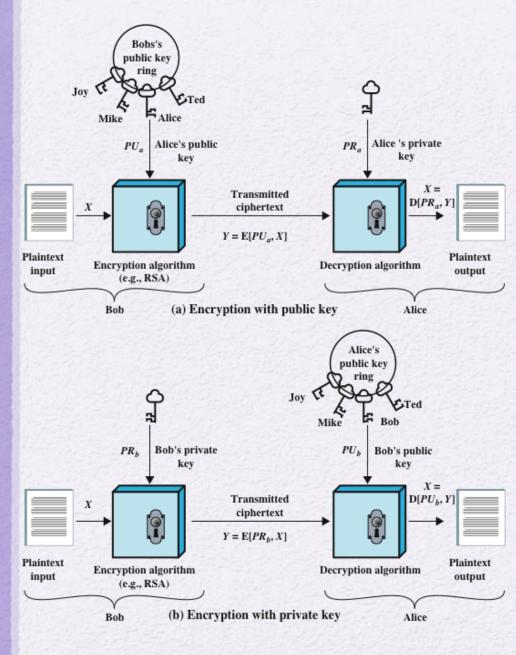


Figure 9.1 Public-Key Cryptography

Table 9.2 Conventional and Public-Key Encryption

Conventional Encryption	Public-Key Encryption	
Needed to Work:	Needed to Work:	
 The same algorithm with the same key is used for encryption and decryption. 	One algorithm is used for encryption and a related algorithm for decryption with a pair of keys, one for encryption and one	
The sender and receiver must share the algorithm and the key.	for decryption.	
Needed for Security:	 The sender and receiver must each have one of the matched pair of keys (not the same one). 	
 The key must be kept secret. 		
	Needed for Security:	
 It must be impossible or at least impractical to decipher a message if the key is kept secret. 	One of the two keys must be kept secret.	
	It must be impossible or at least	
 Knowledge of the algorithm plus samples of ciphertext must be insufficient to determine the key. 	impractical to decipher a message if one of the keys is kept secret.	
	Knowledge of the algorithm plus one of the keys plus samples of ciphertext must be insufficient to determine the other key.	

Public-Key Cryptosystem: Secrecy

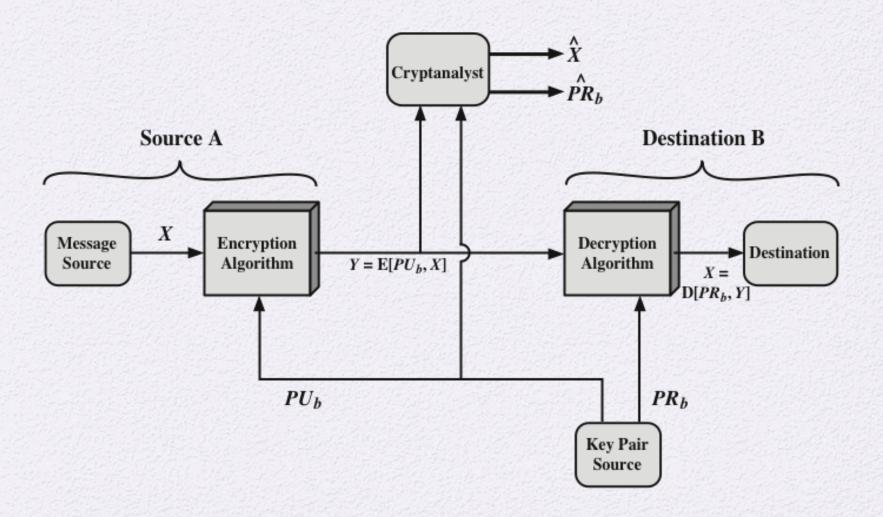


Figure 9.2 Public-Key Cryptosystem: Secrecy

Public-Key Cryptosystem: Authentication

Figure 9.3 Public-Key Cryptosystem: Authentication

Public-Key Cryptosystem: Authentication and Secrecy

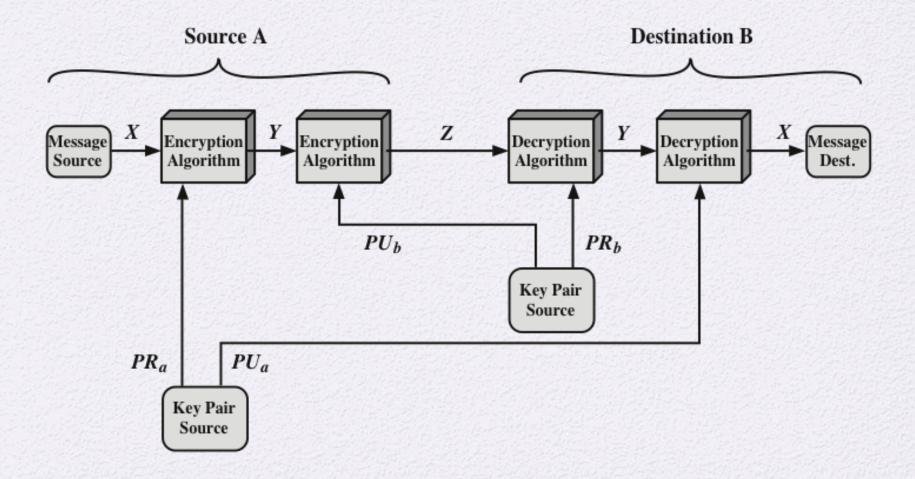


Figure 9.4 Public-Key Cryptosystem: Authentication and Secrecy

Applications for Public-Key Cryptosystems

 Public-key cryptosystems can be classified into three categories:

• The sender encrypts a message with the recipient's public key

• The sender "signs" a message with its private key

• Two sides cooperate to exchange a session key

 Some algorithms are suitable for all three applications, whereas others can be used only for one or two

Table 9.3

Applications for Public-Key Cryptosystems

Algorithm	Encryption/Decryption	Digital Signature	Key Exchange
RSA	Yes	Yes	Yes
Elliptic Curve	Yes	Yes	Yes
Diffie-Hellman	No	No	Yes
DSS	No	Yes	No

Table 9.3 Applications for Public-Key Cryptosystems

Public-Key Requirements

- Conditions that these algorithms must fulfill:
 - It is computationally easy for a party B to generate a pair (public-key PU_b , private key PR_b)
 - It is computationally easy for a sender A, knowing the public key and the message to be encrypted, to generate the corresponding ciphertext
 - It is computationally easy for the receiver B to decrypt the resulting ciphertext using the private key to recover the original message
 - It is computationally infeasible for an adversary, knowing the public key, to determine the private key
 - It is computationally infeasible for an adversary, knowing the public key and a ciphertext, to recover the original message
 - The two keys can be applied in either order

Public-Key Requirements

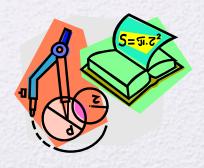
- Need a trap-door one-way function
 - A one-way function is one that maps a domain into a range such that every function value has a unique inverse, with the condition that the calculation of the function is easy, whereas the calculation of the inverse is infeasible
 - Y = f(X) easy
 - $X = f^{-1}(Y)$ infeasible
- A trap-door one-way function is a family of invertible functions f_k, such that
 - $Y = f_k(X)$ easy, if k and X are known
 - $X = f_k^{-1}(Y)$ easy, if k and Y are known
 - $X = f_k^{-1}(Y)$ infeasible, if Y known but k not known
- A practical public-key scheme depends on a suitable trapdoor one-way function

Rivest-Shamir-Adleman (RSA) Scheme

- Developed in 1977 at MIT by Ron Rivest, Adi Shamir & Len Adleman
- Most widely used general-purpose approach to public-key encryption
- Is a cipher in which the plaintext and ciphertext are integers between 0 and n – 1 for some n
 - A typical size for n is 1024 bits, or 309 decimal digits

RSA Algorithm

- RSA makes use of an expression with exponentials
- Plaintext is encrypted in blocks with each block having a binary value less than some number n
- Encryption and decryption are of the following form, for some plaintext block M and ciphertext block C


```
C = M^e \mod n

M = C^d \mod n = (M^e)^d \mod n = M^{ed} \mod n
```

- Both sender and receiver must know the value of n
- The sender knows the value of e, and only the receiver knows the value of d
- This is a public-key encryption algorithm with a public key of PU={e,n} and a private key of PR={d,n}

Algorithm Requirements

- For this algorithm to be satisfactory for publickey encryption, the following requirements must be met:
 - 1. It is possible to find values of e, d, n such that $M^{ed} \mod n = M$ for all M < n
 - 2. It is relatively easy to calculate M^e mod n and C^d mod n for all values of M < n
 - 3. It is infeasible to determine *d* given *e* and *n*

Key Generation by Alice

Select p, q

p and q both prime, $p \neq q$

Calculate $n = p \times q$

Calculate $\phi(n) = (p-1)(q-1)$

Select integer e

 $gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate d

 $d = e^{-1} \pmod{\phi(n)}$

Public key

 $PU = \{e,n\}$

Private key

 $PR = \{d, n\}$

Encryption by Bob with Alice's Public Key

Plaintext:

M < n

Ciphertext:

 $C = M^e \mod n$

Decryption by Alice with Alice's Private Key

Ciphertext:

C

Plaintext:

 $M = C^d \mod n$

Figure 9.5 The RSA Algorithm

Example of RSA Algorithm

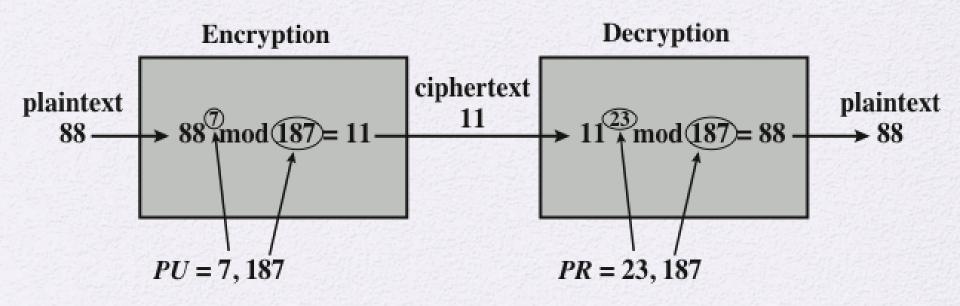


Figure 9.6 Example of RSA Algorithm

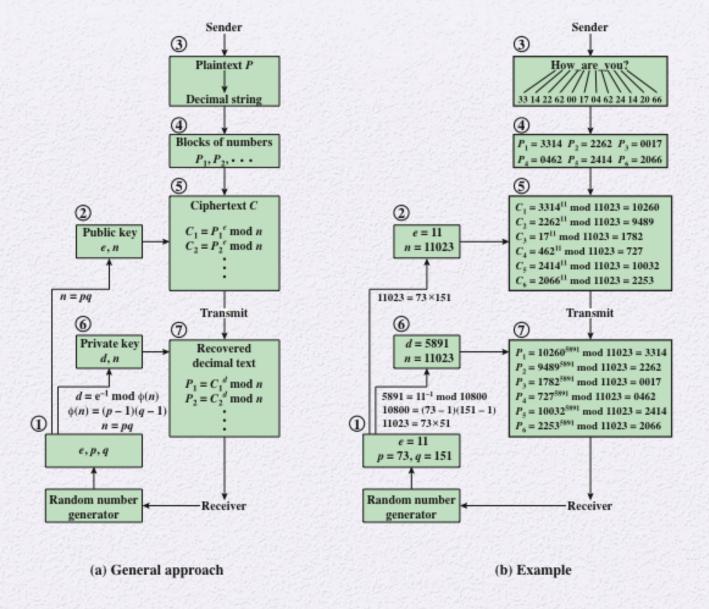


Figure 9.7 RSA Processing of Multiple Blocks

Exponentiation in Modular Arithmetic

- Both encryption and decryption in RSA involve raising an integer to an integer power, mod n
- Can make use of a property of modular arithmetic:
 - $[(a \bmod n) \times (b \bmod n)] \bmod n = (a \times b) \bmod n$
- With RSA you are dealing with potentially large exponents so efficiency of exponentiation is a consideration

$$c \leftarrow 0$$
; $f \leftarrow 1$
for $i \leftarrow k$ downto 0
do $c \leftarrow 2 \times c$
 $f \leftarrow (f \times f)$ mod n
if $b_i = 1$
then $c \leftarrow c + 1$
 $f \leftarrow (f \times a)$ mod n
return f

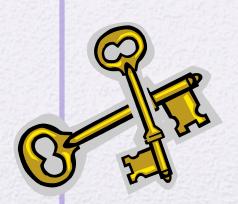

Note: The integer b is expressed as a binary number $b_k b_{k-1}...b_0$

Figure 9.8 Algorithm for Computing $a^b \mod n$

Key Generation

- Before the application of the public-key cryptosystem each participant must generate a pair of keys:
 - Determine two prime numbers p and q
 - Select either e or d and calculate the other

- Because the value of n = pq will be known to any potential adversary, primes must be chosen from a sufficiently large set
 - The method used for finding large primes must be reasonably efficient

Procedure for Picking a Prime Number

- Pick an odd integer n at random
- Pick an integer a < n at random
- Perform the probabilistic primality test with a as a parameter. If n fails the test, reject the value n and go to step 1
- If n has passed a sufficient number of tests, accept n; otherwise, go to step 2

The Security of RSA

Chosen ciphertext attacks

 This type of attack exploits properties of the RSA algorithm

Hardware fault-based attack

 This involves inducing hardware faults in the processor that is generating digital signatures

Brute force

 Involves trying all possible private keys

Five possible approaches to attacking RSA are:

Mathematical attacks

 There are several approaches, all equivalent in effort to factoring the product of two primes

Timing attacks

 These depend on the running time of the decryption algorithm

Summary

- Public-key cryptosystems
- Applications for publickey cryptosystems
- Requirements for public-key cryptography
- Public-key cryptanalysis

- The RSA algorithm
 - Description of the algorithm
 - Computational aspects
 - Security of RSA