
Cryptography and
Network Security

Sixth Edition

by William Stallings

Chapter 5
Advanced Encryption Standard

Advance Encryption Standard

Topics

 Origin of AES

 Basic AES

 Inside Algorithm

 Final Notes

Origins

 A replacement for DES was needed

 Key size is too small

 Can use Triple-DES – but slow, small block

 US NIST issued call for ciphers in 1997

 15 candidates accepted in Jun 98

 5 were shortlisted in Aug 99

AES Competition Requirements

 Private key symmetric block cipher

 128-bit data, 128/192/256-bit keys

 Stronger & faster than Triple-DES

 Provide full specification & design details

 Both C & Java implementations

AES Evaluation Criteria

 initial criteria:
 security – effort for practical cryptanalysis

 cost – in terms of computational efficiency

 algorithm & implementation characteristics

 final criteria
 general security

 ease of software & hardware implementation

 implementation attacks

 flexibility (in en/decrypt, keying, other factors)

The AES Cipher - Rijndael

 Rijndael was selected as the AES in Oct-2000
 Designed by Vincent Rijmen and Joan Daemen in Belgium

 Issued as FIPS PUB 197 standard in Nov-2001

 An iterative rather than Feistel cipher
 processes data as block of 4 columns of 4 bytes (128 bits)

 operates on entire data block in every round

 Rijndael design:
 simplicity

 has 128/192/256 bit keys, 128 bits data

 resistant against known attacks

 speed and code compactness on many CPUs

V. Rijmen

J. Daemen

Topics

 Origin of AES

 Basic AES

 Inside Algorithm

 Final Notes

AES
Encryption

Process

AES Data Structures

Table 5.1
AES Parameters

AES
Encryption

and
Decryption

AES Conceptual Scheme

15

AES

Plaintext (128 bits)

Ciphertext (128 bits)

Key (128-256 bits)

Multiple rounds

16

 Rounds are (almost) identical

 First and last round are a little different

High Level Description

• Round keys are derived from the cipher key
using Rijndael's key scheduleKey Expansion

• AddRoundKey : Each byte of the state is combined
with the round key using bitwise xorInitial Round

• SubBytes : non-linear substitution step

• ShiftRows : transposition step

• MixColumns : mixing operation of each column.

• AddRoundKey

Rounds

• SubBytes

• ShiftRows

• AddRoundKey
Final Round No MixColumns

Overall Structure

128-bit values

19

 Data block viewed as 4-by-4 table of bytes

 Represented as 4 by 4 matrix of 8-bit bytes.

 Key is expanded to array of 32 bits words

1 byte

Data Unit

Unit Transformation

Changing Plaintext to State

Topics

 Origin of AES

 Basic AES

 Inside Algorithm

 Final Notes

Details of Each Round

SubBytes: Byte Substitution

 A simple substitution of each byte

 provide a confusion

 Uses one S-box of 16x16 bytes containing a permutation of all 256 8-bit
values

 Each byte of state is replaced by byte indexed by row (left 4-bits) & column
(right 4-bits)

 eg. byte {95} is replaced by byte in row 9 column 5

 which has value {2A}

 S-box constructed using defined transformation of values in Galois Field-
GF(28)

Galois : pronounce “Gal-Wa”

SubBytes and InvSubBytes

SubBytes Operation

 The SubBytes operation involves 16 independent byte-to-byte

transformations.
• Interpret the byte as two

hexadecimal digits xy

• SW implementation, use row (x)

and column (y) as lookup pointer
S1,1 = xy16

x’y’16

SubBytes Table

 Implement by Table Lookup (S-box):

InvSubBytes Table (Inverse S-box):

Sample SubByte Transformation

 The SubBytes and InvSubBytes transformations are

inverses of each other.

ShiftRows

 Shifting, which permutes the bytes.

 A circular byte shift in each each
 1st row is unchanged

 2nd row does 1 byte circular shift to left

 3rd row does 2 byte circular shift to left

 4th row does 3 byte circular shift to left

 In the encryption, the transformation is called

ShiftRows

 In the decryption, the transformation is called

InvShiftRows and the shifting is to the right

ShiftRows Scheme

ShiftRows and InvShiftRows

MixColumns

 ShiftRows and MixColumns provide diffusion to the

cipher

 Each column is processed separately

 Each byte is replaced by a value dependent on all 4 bytes

in the column

 Effectively a matrix multiplication in GF(28) using prime

poly m(x) =x8+x4+x3+x+1

MixClumns Scheme

The MixColumns transformation operates at the column level; it

transforms each column of the state to a new column.

MixColumn and InvMixColumn

AddRoundKey

 XOR state with 128-bits of the round key

 AddRoundKey proceeds one column at a time.

 adds a round key word with each state column matrix

 the operation is matrix addition

 Inverse for decryption identical

 since XOR own inverse, with reversed keys

 Designed to be as simple as possible

AddRoundKey Scheme

AES Round

AES Key Scheduling

 takes 128-bits (16-bytes) key and expands into array of 44

32-bit words

Key Expansion

• The Rijndael developers
designed the expansion
key algorithm to be
resistant to known
cryptanalytic attacks

• Inclusion of a round-
dependent round
constant eliminates the
symmetry between the
ways in which round keys
are generated in different
rounds

•Knowledge of a part of the cipher key
or round key does not enable
calculation of many other round-key bits

•An invertible transformation

•Speed on a wide range of processors

•Usage of round constants to eliminate
symmetries

•Diffusion of cipher key differences into
the round keys

•Enough nonlinearity to prohibit the full
determination of round key differences
from cipher key differences only

•Simplicity of description

The specific criteria that were used are:

Key Expansion Scheme

Key Expansion submodule

 RotWord performs a one byte circular left shift on a word

For example:

RotWord[b0,b1,b2,b3] = [b1,b2,b3,b0]

 SubWord performs a byte substitution on each byte of input

word using the S-box

 SubWord(RotWord(temp)) is XORed with RCon[j] – the

round constant

Round Constant (RCon)

 RCON is a word in which the three rightmost bytes are zero

 It is different for each round and defined as:

RCon[j] = (RCon[j],0,0,0)

where RCon[1] =1 , RCon[j] = 2 * RCon[j-1]

 Multiplication is defined over GF(2^8) but can be implement in Table

Lookup

Key Expansion Example (1st Round)

• Example of expansion of a 128-bit cipher key

Cipher key = 2b7e151628aed2a6abf7158809cf4f3c

w0=2b7e1516 w1=28aed2a6 w2=abf71588 w3=09cf4f3c

i wi-1 RotWor

d

SubWor

d

Rcon[i/4

]

ti w[i-4] wi

4 09cf4f3c cf4f3c09 8a84eb0

1

0100000

0

8b84eb0

1

2b7e151

6

a0fafe17

5 a0fafe17 - - - - 28aed2a

6

88542cb

1

6 88542cb

1

- - - - Abf7158

8

23a3393

9

7 23a3393

9

- - - - 09cf4f3c 2a6c760

5

Topics

 Origin of AES

 Basic AES

 Inside Algorithm

 Final Notes

Equivalent Inverse Cipher

• AES decryption cipher is
not identical to the
encryption cipher
• The sequence of

transformations differs
although the form of the
key schedules is the
same

• Has the disadvantage
that two separate
software or firmware
modules are needed for
applications that require
both encryption and
decryption

Two separate changes are
needed to bring the
decryption structure in line
with the encryption structure

The first two stages of the
decryption round need to be
interchanged

The second two stages of the
decryption round need to be
interchanged

AES Security

 AES was designed after DES.

 Most of the known attacks on DES were already tested on AES.

 Brute-Force Attack

 AES is definitely more secure than DES due to the larger-size key.

 Statistical Attacks

 Numerous tests have failed to do statistical analysis of the ciphertext

 Differential and Linear Attacks

 There are no differential and linear attacks on AES as yet.

Implementation Aspects

 The algorithms used in AES are so simple that they
can be easily implemented using cheap processors
and a minimum amount of memory.

 Very efficient

 Implementation was a key factor in its selection as
the AES cipher

 AES animation:

 http://www.cs.bc.edu/~straubin/cs381-05/blockciphers/rijndael_ingles2004.swf

