Chapter One

$$
1=1 \cdot e^{0 i}=1 \cdot e^{2 k \pi i}, \quad(k=0, \pm 1, \pm 2, \ldots)
$$

Then we take the $6^{\text {th }}$ root and find

$$
z_{k}=1^{1 / 6} e^{2 k \pi i / 6}=e^{k \pi i / 3}, \quad(k=0, \pm 1, \pm 2, \ldots)
$$

The six roots are

$$
\begin{array}{lll}
z_{0}=1 & z_{1}=e^{\pi i / 3}=\frac{1}{2}+\frac{i}{2} \sqrt{3} & z_{2}=e^{2 \pi i / 3}=-\frac{1}{2}+\frac{i}{2} \sqrt{3} \\
z_{3}=-1 & z_{4}=e^{4 \pi i / 3}=-\frac{1}{2}-\frac{i}{2} \sqrt{3} & z_{5}=e^{5 \pi i / 3}=\frac{1}{2}-\frac{i}{2} \sqrt{3}
\end{array}
$$

2- Find all cubic roots of $w=-1+i$.

Solution:

Let $z^{3}=w$. First we write $-1+i$ in polar form.
$r=|w|=\sqrt{(-1)^{2}+(1)^{2}}=\sqrt{2}$.
$\theta=\arctan \left(\frac{-1}{1}\right)=\arctan (-1)$. Since w lies in the second quadrant, therefore, $\theta=\frac{3 \pi}{4}=135^{\circ}$.

$$
z_{k}=r^{1 / n} e^{i\left(\frac{\theta}{n}+2 \pi \frac{k}{n}\right)}=r^{1 / n}\left[\cos \left(\frac{\theta}{n}+2 \pi \frac{k}{n}\right)+i \sin \left(\frac{\theta}{n}+2 \pi \frac{k}{n}\right)\right]
$$

$n=3, k=0,1,2$.

$$
\begin{gathered}
k=0: \quad z_{0}=\sqrt{2}^{1 / 3} e^{i\left(\frac{3 \pi}{3}\right)}=2^{1 / 6}\left[\cos \left(\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{4}\right)\right] \\
k=1: \quad z_{1}=\sqrt{2}^{1 / 3} e^{i\left(\frac{\pi}{4}+2 \pi \frac{1}{3}\right)}=2^{1 / 6}\left[\cos \left(\frac{\pi}{4}+2 \pi \frac{1}{3}\right)+i \sin \left(\frac{\pi}{4}+2 \pi \frac{1}{3}\right)\right. \\
=2^{1 / 6}\left[\cos \left(\frac{11 \pi}{12}\right)+i \sin \left(\frac{11 \pi}{12}\right)\right] . \\
k=2: \quad z_{2}=\sqrt{2}^{1 / 3} e^{i\left(\frac{\pi}{4}+2 \pi \frac{2}{3}\right)}=2^{1 / 6}\left[\cos \left(\frac{\pi}{4}+2 \pi \frac{2}{3}\right)+i \sin \left(\frac{\pi}{4}+2 \pi \frac{2}{3}\right)\right. \\
=2^{1 / 6}\left[\cos \left(\frac{19 \pi}{12}\right)+i \sin \left(\frac{19 \pi}{12}\right)\right] .
\end{gathered}
$$

Chapter One

3- Find the solution of the equation $z^{5}+32=0$.

Solution:

First we write $w=-32$ in polar form.
$r=|w|=\sqrt{(-32)^{2}+(0)^{2}}=32$.
$\theta=\arctan \left(\frac{0}{-32}\right)=\arctan (0)$. Since w lies in the second quadrant, therefore, $\theta=\pi$.

$$
z_{k}=r^{1 / n} e^{i\left(\frac{\theta}{n}+2 \pi \frac{k}{n}\right)}=r^{1 / n}\left[\cos \left(\frac{\theta}{n}+2 \pi \frac{k}{n}\right)+i \sin \left(\frac{\theta}{n}+2 \pi \frac{k}{n}\right)\right] .
$$

$n=5, k=0,1,2,3,4$.

$$
(-32)^{1 / 5}=32^{1 / 5}\left[\cos \left(\frac{\pi}{5}+\frac{2 \pi k}{5}\right)+i \sin \left(\frac{\pi}{5}+\frac{2 \pi k}{5}\right)\right], \quad k=0,1,2,3,4
$$

that is,

$$
\begin{array}{ll}
k=0: & 2\left(\cos \frac{\pi}{5}+i \sin \frac{\pi}{5}\right) \\
k=1: & 2\left(\cos \frac{3 \pi}{5}+i \sin \frac{3 \pi}{5}\right) \\
k=2: & -2 \\
k=3: & 2\left(\cos \frac{7 \pi}{5}+i \sin \frac{7 \pi}{5}\right) \\
k=4: & 2\left(\cos \frac{9 \pi}{5}+i \sin \frac{9 \pi}{5}\right)
\end{array}
$$

Chapter One

Exercise1.10:

1- Write in polar form $r e^{i \theta}$, the following:
(1) i
(2) -2
(3) $\sqrt{3}+3 i$
(4) $-3 i$
(5) $1-i \sqrt{3}$
(6) $1+i \sqrt{3}$ (7) $4 i$.

2- Put the following complex numbers in the form $x+i y$.
(1) $e^{3 i \pi}$
(2) $3 e^{i \frac{\pi}{4}}$
(3) $\pi e^{-i \frac{\pi}{3}}$
(4) $e^{-5 i \frac{\pi}{4}}$
(5) $e^{i 100 \pi}$.

3- Put $(-1+i)^{100}$ in the form $x+i y$.
4- Let $z_{1}=\sqrt{3}+3 i, z_{2}=1+i \sqrt{2}, z_{3}=4 i$. Find the following in the form $x+i y$.

$$
\frac{z_{3}^{2}\left(z_{1}^{2}+z_{2}^{2}\right)^{2}}{z_{1} z_{2}}
$$

5- Prove that $\left(\frac{-1 \pm i \sqrt{3}}{2}\right)^{3}=1$.
6- Prove that $(1+i)^{n}+(1-i)^{n}=2^{\frac{n+2}{2}} \cos \left(\frac{n \pi}{4}\right)$.
7- Prove by polar form that $i(1-i \sqrt{3})(\sqrt{3}+i)=2+i 2 \sqrt{3}$.
8- Find the modulus of the following:
(1) $\left|\frac{-2+3 i}{3-2 i}\right|$
(2) $\left|\frac{1-4 i}{4+3 i}\right|$

9- Find and draw all real complex solutions of the following:
(1) $z^{2}+7 z+10=0$.
(2) $z^{3}+8=0$.
(3) $z^{5}-16 z=0$.
(4) $z^{5}-32=0$.
(5) $z^{4}+2 z^{2}-3=0$.
(6) $3 z^{6}=z^{3}+2$.
(7) $z^{3}-125=0$.
(8) $z^{2}+6 z+10=0$.

10- Compute the following:
(1) $\left|(1-i \sqrt{3})^{2}-(4-i \sqrt{3})\right|$.
(2) $\left|(3-i)^{2}(5-i \sqrt{2})\right|$.

