Complex Numbers

Chapter One

3- Write $z = (1 + i)^8$ in the form a + ib. Solution: First we write w = (1 + i) in the polar coordinate. $r = |w| = \sqrt{(1)^2 + (1)^2} = \sqrt{2}$. $\theta = \arctan\left(\frac{1}{1}\right) = \arctan(1)$. Since *w* lies in the first quadrant, therefore, $\theta = \frac{\pi}{4} = 45^\circ$. So, by **De Moivre's Formula**

$$z = w^8 = r^8 cis(8\theta) = \sqrt{2}^8 cis\left(\frac{8\pi}{4}\right) = 2^4 cis(2\pi) = 16(1+0i) = 16.$$

Geometry of Arithmetic 1.7:

Since we can picture complex numbers as points in the complex plane, we can also try to visualize the arithmetic operations "addition" and "multiplication."

1- To add z and w one forms the parallelogram with the origin, z and w as vertices. The fourth vertex then is z + w.

2- To understand multiplication we first look at multiplication with i. If z = a + bi, then

iz = i(a + bi) = ia + bi2 = ai - b = -b + ai.Thus, to form *iz* from the complex number *z* one rotates *z* counterclockwise by 90 degrees.

If a is any real number, then multiplication of w = c + di by a gives aw = ac + adi,

So, aw points in the same direction, but is a times as far away from the origin. If a < 0 then aw points in the opposite direction. Next, to multiply z = a + bi and w = c + di we write the product as

zw = (a + bi)w = aw + biw.

Complex Numbers

Complex Roots of a Number 1.8:

For any given complex number $w \neq 0$ there is a method of finding all complex solutions of the equation

 $z^n = w$ (1)

if $n = 2, 3, 4, \dots$ is a given integer.

To find these solutions you write w in polar form, that is, you find r > 0 and θ such that $w = re^{i\theta}$. Then

$$z = r^{1/n} e^{i\theta/n} = \sqrt[n]{w} = w^{1/n}$$

is a solution to (1). But it isn't the only solution, because the angle θ for which $w = re^{i\theta}$ isn't unique, it is only determined up to a multiple of 2π . Thus, if we have found one angle θ for which $w = re^{i\theta}$, then we can also write $w = re^{i(\theta + 2k\pi)}, k = 0, \mp 1, \mp 2, ...$

The n^{th} roots of w are then

$$z_{k} = r^{1/n} e^{i(\frac{\theta}{n} + 2\pi\frac{k}{n})} = r^{1/n} \left[\cos\left(\frac{\theta}{n} + 2\pi\frac{k}{n}\right) + i\sin(\frac{\theta}{n} + 2\pi\frac{k}{n}) \right].$$

Here k can be any integer, so it looks as if there are infinitely many solutions. However, if you increase k by n, then the exponent above increases by $2\pi i$, and hence z_k does not change. In a formula:

 $z_n = z_0, \ z_{n+1} = z_1, \ z_{n+2} = z_2, ..., z_{n+k} = z_k.$

So if you take k = 0, 1, 2, ..., n - 1 then you have had all the solutions. Example 1.9:

1- Find all sixth roots of w = 1.

Solution: We have to solve $z^6 = 1$. First we write 1 in polar form.