Chapter One

3- Write $z=(1+i)^{8}$ in the form $a+i b$.

Solution:

First we write $w=(1+i)$ in the polar coordinate.
$r=|w|=\sqrt{(1)^{2}+(1)^{2}}=\sqrt{2} . \theta=\arctan \left(\frac{1}{1}\right)=\arctan (1)$. Since w lies in the first quadrant, therefore, $\theta=\frac{\pi}{4}=45^{\circ}$. So, by De Moivre's Formula

$$
z=w^{8}=r^{8} \operatorname{cis}(8 \theta)=\sqrt{2}^{8} \operatorname{cis}\left(\frac{8 \pi}{4}\right)=2^{4} \operatorname{cis}(2 \pi)=16(1+0 i)=16 .
$$

Geometry of Arithmetic 1.7:

Since we can picture complex numbers as points in the complex plane, we can also try to visualize the arithmetic operations "addition" and "multiplication."

1- To add z and w one forms the parallelogram with the origin, z and w as vertices. The fourth vertex then is $z+w$.

2- To understand multiplication we first look at multiplication with \boldsymbol{i}.
If $z=a+b i$, then

$$
i z=i(a+b i)=i a+b i 2=a i-b=-b+a i .
$$

Thus, to form $i z$ from the complex number z one rotates z counterclockwise by 90 degrees.

Chapter One

If a is any real number, then multiplication of $w=c+d i$ by a gives

$$
a w=a c+a d i
$$

So, aw points in the same direction, but is a times as far away from the origin. If $a<0$ then aw points in the opposite direction.
Next, to multiply $z=a+b i$ and $w=c+d i$ we write the product as $z w=(a+b i) w=a w+b i w$.

Chapter One

Complex Roots of a Number 1.8:

For any given complex number $w \neq 0$ there is a method of finding all complex solutions of the equation

$$
z^{n}=w \text {-------------- (1) }
$$

if $n=2,3,4, \ldots$ is a given integer.
To find these solutions you write w in polar form, that is, you find $r>0$ and θ such that $w=r e^{i \theta}$. Then

$$
z=r^{1 / n} e^{i \theta / n}=\sqrt[n]{w}=w^{1 / n}
$$

is a solution to (1). But it isn't the only solution, because the angle θ for which $w=r e^{i \theta}$ isn't unique, it is only determined up to a multiple of 2π. Thus, if we have found one angle θ for which $w=r e^{i \theta}$, then we can also write

$$
w=r e^{i(\theta+2 k \pi)}, k=0, \mp 1, \mp 2, \ldots
$$

The $n^{\text {th }}$ roots of w are then

$$
z_{k}=r^{1 / n} e^{i\left(\frac{\theta}{n}+2 \pi \frac{k}{n}\right)}=r^{1 / n}\left[\cos \left(\frac{\theta}{n}+2 \pi \frac{k}{n}\right)+i \sin \left(\frac{\theta}{n}+2 \pi \frac{k}{n}\right)\right] .
$$

Here k can be any integer, so it looks as if there are infinitely many solutions. However, if you increase k by n, then the exponent above increases by $2 \pi i$, and hence z_{k} does not change. In a formula:

$$
z_{n}=z_{0}, z_{n+1}=z_{1}, z_{n+2}=z_{2}, \ldots, z_{n+k}=z_{k} .
$$

So if you take $k=0,1,2, \ldots, n-1$ then you have had all the solutions.

Example 1.9:

1- Find all sixth roots of $w=1$.
Solution: We have to solve $z^{6}=1$. First we write 1 in polar form.

