Definitions 3.2.6.

(i) R is an equivalence relation A, if R is reflexive, symmetric, and transitive. The set

$$
[x]=\{y \in A: x R y\}
$$

is called equivalence class.
(ii) R is a partial order on A (an order on A, or an ordering of A), if R is reflexive, antisymmetric, and transitive. We usually write \leq for R, i.e.

$$
x \leq y \text { iff } x R y
$$

(iii) If R is a partial order on A, then the element $a \in A$ is called least element of \boldsymbol{A} with respect to \boldsymbol{R} if and only if $a R x$ for all $x \in A$.
(iv) If R is a partial order on A, then the element $a \in A$ is called greatest element of \boldsymbol{A} with respect to \boldsymbol{R} if and only if $x R a$ for all $x \in A$.
(v) If R is a partial order on A, then the element $a \in A$ is called minimal element of \boldsymbol{A} with respect to \boldsymbol{R} if and only if $x R a$ then $a=x$ for all $x \in A$.
(vi) If R is a partial order on A, then the element $a \in A$ is called maximal element of \boldsymbol{A} with respect to \boldsymbol{R} if and only if $a R x$ then $a=x$ for all $x \in A$.

Example 3.2.7.

(i) The relation on the set of integers \mathbb{Z} defined by

$$
(x, y) \in R \text { if } x-y=2 k \text { for some } k \in \mathbb{Z}
$$

is an equivalence relation, and partitions the set integers into two equivalence classes, i.e., the even and odd integers.
If $y=0$, then $[x]=\mathbb{Z}_{e}$. If $y=1$, then $[x]=\mathbb{Z}_{o}$.
(ii) The inclusion relation \subseteq is a partial order on the set of subsets $P(S)$ of a set S.
(iii) Let $A=\{3,6,7\}$, and

$$
R_{1}=\{(x, y) \in A \times A: x \leq y\}, R_{2}=\{(x, y) \in A \times A: x \geq y\}
$$

$$
R_{3}=\{(x, y) \in A \times A: y \text { divisble by } x\}
$$

are relations defined on A.

$$
\begin{aligned}
& R_{1}=\{(3,3),(3,6),(3,7),(6,6),(6,7),(7,7)\}, \\
& R_{2}=\{(3,3),(6,3),(6,6),(7,3),(7,6),(7,7)\} . \\
& R_{3}=\{(3,3),(3,6),(6,6),(7,7)\} .
\end{aligned}
$$

R_{1}, R_{2} and R_{3} are partial orders on A.
(1)The least element of A with respect to R_{1} is
(2)The least element of A with respect to R_{2} is
(3)The greatest element of A with respect to R_{1} is
(4)The greatest element of A with respect to R_{2} is
(5) A has no least and greatest element with respect to R_{3}.
(6)The maximal element of A with respect to R_{3} is
(7)The minimal element of A with respect to R_{3} is
(iv) Let $X=\{1,2,4,7\}, K=\{\{1,2\},\{4,7\},\{1,2,4\}, X\}$ and

$$
\begin{aligned}
& R_{1}=\{(A, B) \in K \times K: A \subseteq B\}, \\
& R_{2}=\{(A, B) \in K \times K: A \supseteq B\},
\end{aligned}
$$

are relations defined on K.

$$
\begin{aligned}
R_{1}= & (\{1,2\},\{1,2\}), \quad(\{1,2\},\{1,2,4\}),(\{1,2\}, X), \\
& (\{4,7\},\{4,7\}), \quad(\{4,7\}, X), \\
& (\{1,2,4\},\{1,2,4\}),(\{1,2,4\}, X), \\
& (X, X) \\
R_{2}= & (\{1,2\},\{1,2\}), \\
& (\{4,7\},\{4,7\}), \\
& (\{1,2,4\},\{1,2\}),(\{1,2,4\},\{1,2,4\}), \\
& (X,\{1,2\}), \quad(X,\{4,7\}), \quad(X,\{1,2,4\}),(X, X)
\end{aligned}
$$

R_{1}, R_{2} and R_{3} are partial orders on K.
(1) K has no least element with respect to R_{1}.
(2)The greatest element of K with respect to R_{1} is
(3)The least element of K with respect to to R_{2} is
(4) K has no greatest element with respect to R_{2}.
(5)The minimal elements of K with respect to R_{1} are
(6)The maximal element of K with respect to R_{1} is
(7)The minimal element of K with respect to R_{2} is
(8)The maximal element of K with respect to R_{2} is

Remark 3.2.8.

(i) Every greatest (least) element is maximal (minimal). The converse is not true.
(ii) The greatest (least) element if exist, it is unique.
(iii) every finite partially ordered set has maximal (minimal) element.

Properties of equivalence classes

(iv) $a \in[a]$.
(v) If $a R b$ then $[a]=[b]$.
(vi) $[a]=[b] \Leftrightarrow(a, b) \in R$.
(vii) If $[a] \cap[b] \neq \varnothing$ then $[a]=[b]$.

Definition 3.2.9. R is a totally order on A if R is a partial order, and $x R y$ or $y R x$ for all $x, y \in A$, i.e. if any two elements of A are comparable with respect to R. Then we call the pair (A, \leq) a totally order set or a chain.
Example 3.2.10.
(i) Let $A=\{2,3,4,5,6\}$, and define R by the usual \leq relation on \mathbb{N}, i.e. $a R b$ iff $a \leq b$. Then R is a totally order on A.
(ii) Let us define another relation on \mathbb{N}

$$
a / b \text { iff } a \text { divides } b \text {. }
$$

To show that / is a partial order we have to show the three defining properties of a partial order relation:
Reflexive: Since every natural number is a divisor of itself, we have a / a for all $a \in A$.
Antisymmetric: If a divides b then we have either $a=b$ or $a<b$ in the usual ordering of \mathbb{N}; similarly, if b divides a, then $b=a$ or $b<a$. Since $a<b$ and $b<a$ is not possible, a / b and b / a implies $a=b$.

Transitive: If a divides b and b divides c then a also divides c. Thus, / is a partial order on N.
(iii) Let $A=\{x, y\}$ and define \leq on the power set $P(A)$ by

$$
s \leq t \text { iff } s \text { is a subset of } t
$$

This gives us the following relation:

$$
\emptyset \leq \emptyset, \emptyset \leq\{x\}, \emptyset \leq\{y\}, \emptyset \leq\{x, y\}=A,\{x\} \leq\{x\},\{x\} \leq\{x, y\},\{y\} \leq
$$

$$
\{y\},\{y\} \leq\{x, y\},\{x, y\} \leq\{x, y\} .
$$

Exercise 3.2.11.

Let $A=\{1,2, \ldots, 10\}$ and define the relation R on A by $x R y$ iff x is a multiple of y. Show that R is a partial order on A.

