تجرية رقم (1)

حساب الطاقة الحركية المضطربة لوحدة الكتلة

(TKE=e)
الاجهزة المستخدمة:
ا - جهاز قياس سر عة الرياح ذو الاستجابة. السريعة Fast Response-Anemometer. Y- مخرجات المعلومات (حاسبة الكترونية + طابعة). rـ ساعة نوقيت.

الجزء النظري:
من المعروف ان الطاقة الحركية لجسم متحرك هي نصف الكتلة مضروبة في مربع سر عته

$$
\begin{equation*}
K E=\frac{1}{2} m v^{2} \tag{1}
\end{equation*}
$$

حيث ان :
m: كتلة الجسم
v: سر عة الجسم
وفي حالة التعامل مع الموائع (الهواء يعتبر مائع) فان الطاقة الحركية KE تكون لوحدة الكتلة $\frac{K E}{m}$ فتكون المعادلة كالتالي:

$$
\begin{equation*}
\frac{K E}{m}=\frac{1}{2} v^{2} \tag{2}
\end{equation*}
$$

يمكن تقسيم الطاقة الحركية للجريان الكلي الى جزئين رئيسبين (جز 1 بر برتبط بمعدل السر عة) TKE بالنسبة للطاقة الحركية لمعدل السر عةٌ $\overline{\mathrm{X}} K E=\frac{1}{2}\left(\bar{u}^{2}+\bar{v}^{2}+\bar{w}^{2}\right)$

اما الطاقة الحركية المضطربة TKE فتحسب كالتاللي:
$T K E=\frac{1}{2}\left(\grave{u}^{2}+\grave{v}^{2}+\grave{w}^{2}\right)$ \qquad

لحساب الطاقة الكلية للجريان اقتضى الجمع بين الحالتين فباخذ المعدل للقيم الانية للسر عة نستطيع كتابة معادلة حساب معدل الطاقة الحركية المضطربة لوحدة الكتل بشكل اكثر تمثيلا للجريان الكلي وكالتالي:

$$
\begin{equation*}
\overline{\mathrm{e}}=\frac{\mathrm{TKE}}{\mathrm{~m}}=\frac{1}{2}\left(\overline{\grave{u}^{2}}+\overline{\grave{v}^{2}}+\overline{\grave{w}^{2}}\right) \tag{5}
\end{equation*}
$$

وتكمن اهمية حساب الطاقة الحركية المضطربة في دراسة الاضطر اب في الطبذة المحاددة حيث يمكن تقييم حالة الجو في الطبقة المحاددة (مستقر، غير مستقر ، متعادل) وكما في الشكل.

الثكل(1) يوضح الطاقة الحركية المضطربة لوحدة الكتلةّ(TKE/m) لطبقات محاددة متنوعة

الثنكل(ץ) يوضح الدورة اليوميةٌ للطاقة الحركية المضطربةة لوحئة النتلّة
(TKE/m)

طريقة العمل:
ا - يتم تسجيل رصدتان بفارق زمني قدرة ساعة وبو اقع عشرة قراءات لكل رصدة.
Yـ ترتب البيانات كما في الجدول ادناه حيث يمكن استخر اج قيمة الاضطراب في السر عة
كالتالي:

$$
\grave{\mathrm{x}}=\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}
$$

u	v	w	\grave{u}	\grave{v}	\grave{w}	\grave{u}^{2}	\grave{v}^{2}	\grave{w}^{2}

ז- من خلال المعادلة رقم (5) يحسب معدل الطاقة الحركية المضطربة

