
1

A Short Introduction to Laser Physics

To study the influence of light on the dynamics of an atom or a molecule
experimentally, laser light sources are used most frequently. This is due to the
fact that lasers have well-defined properties. The theory of the laser dates back
to the 1950s and 1960s of the twentieth century and by now, 50 years later
is textbook material. In this introductory chapter, we start by recapitulating
some basic notions of laser theory, which will be needed to understand later
chapters.

More recently, experimentalists have been focusing on pulsed mode oper-
ation of lasers with pulse lengths of the order of femtoseconds, allowing for
time-resolved measurements. At the end of this chapter, we therefore put to-
gether some aspects of pulsed lasers that are important for their application
to atomic and molecular systems.

1.1 The Einstein Coefficients

Laser activity may occur in the case of nonequilibrium, as we will see later.
Before dealing with this situation, let us start by considering the case of
equilibrium between the radiation field and an ensemble of atoms in the walls
of a cavity. This will lead to the Einstein derivation of Planck’s radiation law.

The atoms will be described in the framework of Bohr’s model of the atom,
allowing the electron to occupy only discrete energy levels. For the derivation
of the radiation law, the consideration of just two of those levels is sufficient.
They shall be indexed by 1 and 2 and shall be populated such that for the
total number of atoms

N = N1 + N2 (1.1)

holds. This means that N2 of the atoms are in the excited state with energy E2

and N1 atoms are in the ground state with energy E1. Transitions between the
states shall be possible by emission or absorption of photons of the appropriate
energy. The following processes can be distinguished:
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• Absorption of light leading to a transition rate

dN2

dt

∣
∣
∣
∣
abs

= ρN1B12 (1.2)

from the ground to the excited state.
• Induced (or stimulated) emission of light leading to a transition rate

dN1

dt

∣
∣
∣
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emin

= ρN2B21 (1.3)

for the population change of the ground state.
• Spontaneous emission of light leading to a rate

dN1

dt

∣
∣
∣
∣
emsp

= N2A (1.4)

which amounts to a further increase of the ground state population.

The first two processes are proportional to the energy density ρ of the radiation
field with the constants B12, respectively, B21. The process of spontaneous
emission does not depend on the external field and is proportional to A. These
coefficients are called Einstein’s A- and B-coefficients.

In thermal equilibrium, the rate of transition from level 1 to 2 has to equal
that from 2 to 1, leading to the stationarity condition

N1B12ρ = N2B21ρ + N2A. (1.5)

This equation can be resolved for the energy density ρ leading to

ρ = (N1B12/(N2B21) − 1)−1A/B21. (1.6)

Furthermore, in thermal equilibrium, the ratio of populations is given by the
Boltzmann factor according to

N1/N2 = exp
{

−E1 − E2

kT

}

(1.7)

with the temperature T and the Boltzmann constant k.
As T → ∞ also ρ → ∞, and we can conclude that the B-coefficients have

to be identical B12 = B21 = B. Using Bohr’s postulate

E2 − E1 = hν, (1.8)

where ν is the frequency of the light, we can conclude from (1.6) that

ρ =
(

exp
{

hν

kT

}

− 1
)−1

A/B. (1.9)
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holds. The ratio of Einstein coefficients A/B can now be determined by com-
paring the formula above with the Rayleigh–Jeans law

ρ(ν) =
(

8π/c3
)

ν2kT, (1.10)

which is a very good approximation in the case of low frequencies (see Fig. 1.1).
One then arrives at

A/B =
(

8π/c3
)

hν3 =: D(ν)hν (1.11)

for the ratio, where D(ν)dν = 8πν2/c3dν is the number of possible waves in
the frequency interval from ν to ν+dν in a cavity of unit volume [1]. Inserting
this result into (1.9) yields Planck’s radiation law

ρdν = (D(ν)dν)hν

(

exp
{

hν

kT

}

− 1
)−1

. (1.12)

The last factor in this expression is the number of photons with which a certain
wave is occupied. As a function of the wavelength, Fig. 1.1 shows a comparison
of Planck’s law with the two laws only valid in the limits of either long or short
wavelength. These are the Rayleigh–Jeans and Wien’s law, respectively.

In the case of nonequilibrium, an extension of the formalism just reviewed
leads to the fundamentals of laser theory, as we will see in the following.
The explicit calculation of the Einstein B-coefficient shall be postponed until
Chap. 3.
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Fig. 1.1. Energy density (per wavelength interval) as a function of wavelength for
different radiation laws at a temperature of T = 1,500K
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1.2 Fundamentals of the Laser

The derivation of laser activity can be done in a crude way by again consid-
ering the populations of two levels between which the laser transition occurs.
The atoms are driven out of equilibrium by pumping and are interacting with
a fixed frequency light field with photon number n (considered to be a con-
tinuous variable in the following) in a resonator [2].

First, we consider the processes leading to a change in the populations. In
addition to the ones introduced in Sect. 1.1, these are pump (or gain) and loss
processes. We concentrate on laser activity and therefore spontaneous emission
can be neglected for the time being. Secondly, the realization of the laser process,
requiring more than a bare two-level system will be shortly discussed.

1.2.1 Elementary Laser Theory

In close analogy to the Einstein coefficients for the induced transition rates,
coefficients can be defined that fulfill Wij = Wji = W leading to an induced
emission rate of (N2−N1)Wn.1 Including the gain and loss processes, depicted
in Fig. 1.2, the rate equations

dN1(t)
dt

= γ12N2 − ΓN1 + (N2 − N1)Wn, (1.13)

dN2(t)
dt

= ΓN1 − γ12N2 − (N2 − N1)Wn, (1.14)

emerge. Subtracting the first from the second equation leads to a rate equation
for the difference D = N2−N1, which is also referred to as population inversion

WnN2 WnN1γ12N2

N2

N1

ΓN1

Fig. 1.2. Two-level system with elementary transitions (from the left to the right):
Pump process, loss processes (e.g., by radiationless transitions), induced emission
and absorption; spontaneous emission is not considered; adapted from [2]

1 Note that in the previous section the rate was proportional to ρ and here it is
proportional to the dimensionless variable n; we therefore have to use a different
symbol for the coefficients.
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dD

dt
= −2WnD − 1

T1
(D − D0). (1.15)

Here the definitions of the unsaturated inversion D0 = N(Γ − γ12)/(Γ + γ12),
which will become clear below, and the relaxation time T1 = (Γ +γ12)−1 have
been introduced. Including loss effects of the optical cavity via a parameter
tcav, the rate equation for the photon number

dn

dt
= WnD − n

tcav
, (1.16)

follows, where the first term is due to the increase of radiation by stimulated
processes and the effect of spontaneous emission has been neglected. Equa-
tion (1.15) for the inversion together with (1.16) for the photon number are
a simplified version of the full quantum mechanical laser equations, allowing
one to understand some basic laser properties [2, 3].

For an amplification of the light field to occur by starting from a low
initial photon number n0 with unsaturated inversion D0, the right-hand side
of (1.16) has to be larger than zero. For reasons of simplicity, let us here just
consider the steady state defined by

dn

dt
= 0

dD

dt
= 0, (1.17)

however. For the inversion we get

D = D0/(1 + 2T1Wn), (1.18)

i.e., a reduction for a finite photon number as compared to the unsaturated
value D0. The photon number in the steady state follows from

n

(
WD0

1 + 2T1Wn
− 1

tcav

)

= 0, (1.19)

leading to two different solutions:

(1) n0 = 0
(2) n0 = (D0 − Dthr) tcav

2T1

In order for the nontrivial solution to be larger than zero, the inversion has to
be larger than a threshold value Dthr = 1/(Wtcav). As a function of D0, the
transition from the trivial solution to the one with a finite number of photons
is depicted in Fig. 1.3.

In principle, laser theory has to be formulated quantum theoretically. This
is done e.g., in [2]. There the transition from a standard light source to a laser
above threshold is explained in a consistent framework. For large photon num-
bers one finds the phenomenon of anti-bunching, i.e., the photons leave the
cavity equidistantly. The corresponding laser light has a constant amplitude.
Therefore in the applications part of this book, we will assume that the field
can be described classically by using a sinusoidal oscillation.
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Fig. 1.3. Steady state photon number versus unsaturated inversion
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Fig. 1.4. Umbrella mode of NH3 indicated by the arrow and schematic double well
(frequency of oscillation around the minima ωe, tunneling frequency ∆, and barrier
height EB are indicated) with the two levels (their separation is vastly exaggerated
for reasons of better visibility) used for the maser process

1.2.2 Realization of the Laser Principle

As we have just seen, nonequilibrium, characterized by population inversion, is
crucial for operating a laser. Since the invention of the first maser2 it has been
shown that inversion can be achieved in many different ways. A small collec-
tion of possibilities (including also the microwave case) will now be discussed.

The Ammonia Maser

In the NH3-maser [4], the umbrella mode (see Fig. 1.4) leads to a double
well potential and thus quantum mechanically tunneling is possible. A cor-
responding doublet of levels in the double well exists, which is used for the

2 Maser stands for “Microwave amplification by stimulated emission of radiation”.
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Fig. 1.5. Three-level system of the ruby laser with the metastable level E2

maser process. Inversion is created by separating the molecules in the upper
level from the ones in the lower level by using the quadratic Stark effect in an
inhomogeneous electric field.

This principle cannot be applied in the optical (i.e. laser) case, however,
since typically hν � kT at optical frequencies and therefore N2 � N1. In-
creasing the number of atoms in the upper level via pumping is therefore
necessary.

The Ruby Laser

To achieve inversion in a laser, more than two levels are needed. Solid-state
lasers like the three-level ruby laser [5] are pumped optically. Lasing is then
done out of the metastable level E2, shown in Fig. 1.5. By considering just the
pumping and the loss terms in the rate equations for the three-level system
one can show that

Γ > γ12

(

1 +
γ13

γ23

)

(1.20)

has to hold for N2 > N1, which can be fulfilled with moderate pumping under
the conditions γ12 � γ13 and γ23 � γ13 [3].

Exercise 1.1 Consider an extension of the rate equations to the three-level
case and neglect the induced terms. Under which condition for the pumping
rate Γ can population inversion between the second and first level be achieved?

Other Types of Lasers

Other types of lasers are gas lasers, in which the laser active medium is
pumped by collisions with electrons or atoms and the transitions can be either
electronic (He–Ne laser) or ro-vibronic ones (CO2 laser).

In addition, there are semiconductor-based lasers, dye lasers, excimer
lasers, to name but a few. Their working principles are described in some
detail in [2, 6]. Another special laser type is the free electron laser (FEL),
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where a high speed electron beam is accelerated in a spatially modulated
magnetic field and thereby emits coherent light. Recently, the principle of the
FEL has been realized in two new large scale experiments. An infrared FEL
has e.g., been built in Dresden (Rossendorf) and the FEL FLASH (formerly
VUV-FEL) at DESY in Hamburg generates radiation in the soft X-ray regime.

A common principle in the experimental setup of all lasers is the fact that
spontaneous emission (being a form of isotropic noise) should be suppressed.
This is a difficult task, especially for high frequencies, however, due to the
fact that A ∼ Bν3, see (1.11), holds for the Einstein coefficients. Details of
the experimental setup as e.g., the quality factor of the cavity have to be
considered to understand how temporal fluctuation tend to get washed out,
see e.g., [7].

1.3 Pulsed Lasers

Experimentally, lasers have led to a revolution in the way spectroscopy is
performed. This is due to the fact that lasers are light sources with well-defined
properties. They can be operated continuously in a single mode modus with
a fixed or a tunable frequency or in a multi-mode modus [6]. However, more
important for the remainder of this book is the possibility to run lasers in a
pulsed mode. There the laser only oscillates for a short time span (e.g., some
femtoseconds) with the central frequency of the atomic transition that is used.

1.3.1 Frequency Comb

Experimentally, ultrashort laser pulses can be created by using the principle
of mode locking, explained in detail e.g., in [6]. We will shortly discuss the
superposition of a central mode with side bands, underlying that principle
below. The net result is shown in Fig. 1.6, where a train of femtosecond pulses
coupled out of a cavity is depicted. Among other possible applications to be

2 L

OCEM

L

2 L

Fig. 1.6. Laser with end mirror (EM), output coupler (OC) and a pulse, propagating
between EM and OC and being partially transmitted, from [9]
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discussed in detail in later chapters, a pulse train can be used to measure
frequencies very precisely [8].

How are the side bands obtained experimentally, and why does their su-
perposition together with the central frequency ν lead to a train of pulses?
The first question can be answered by considering the periodic modulation of
the inversion with the frequency

δν = c/(2L) = 1/TRT, (1.21)

corresponding to the round trip time TRT of the light in the resonator. With
the modulator placed at some position inside the cavity, the possible resonator
modes with the angular frequencies

ω ± 2πnδν (1.22)

with ω = 2πν and n = 0, 1, 2, 3, . . . are amplified [6]. Peaks at these equidis-
tantly spaced frequencies are called the frequency comb.

To answer the second question, the amplitude of the electric field at a fixed
point in space,

E(t) =
p
∑

n=−p

En cos[(ω + 2πnδν)t + ϕn], (1.23)

has to be considered, where ϕn = nα are the locked phases. A total of 2p + 1
modes shall have a gain above the threshold value. In the case of En = E and
for α = 0 this leads to an intensity of

I(t) ∼ E2

∣
∣
∣
∣

sin[(2p + 1)πδνt]
sin(πδνt)

∣
∣
∣
∣

2

cos2(ωt). (1.24)

Exercise 1.2 Derive a closed expression for the electric field and the corre-
sponding intensity in the case of the mode locked laser by using the geometric
series.

The intensity of (1.24) contains a term describing a fast oscillation with
the central frequency and an envelope function leading to peaks separated by
the round trip time TRT = 1/δν. Furthermore, the pulse length3 is Tp ≈ 1/∆ν,
with the inverse width parameter ∆ν = (2p + 1)δν, increasing linearly with
the number of participating modes. The intensity as a function of time for
three different total numbers of contributing modes is displayed in Fig. 1.7.
The peak intensity increases proportional to (2p+1)2, whereas the pulse length
decreases with 1/(2p + 1).

The effect of the pulse generation can also be understood in the photon
picture. Those photons passing through the modulator at times where its

3 Defined as the full width at half maximum of the intensity curve.
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Fig. 1.7. Envelope of the intensity (arbitrary units) of a pulse train as a function
of time for the superposition of 7 (solid line) 11 (dashed line) and 15 modes (dotted
line)

transmission has a maximum will experience a minimum loss and the cor-
responding light will be maximally amplified. Enormously high intensities
on the order of 1016W cm−2 can be generated using the principle of passive
mode locking [6]. They prevail only for short times on the order of several
femtoseconds, however. Pulses with 6 fs length are nowadays generated with
Ti:Sapphire lasers with Kerr lens mode locking and operate at a center wave-
length of 800 nm [10]. Only about two oscillations of the field are contained
in such a short pulse at those wavelengths. The light is therefore extremely
polychromatic. Many further details regarding experimental realization can
be found in Chap. 3 of [9].

1.3.2 Carrier Envelope Phase

Let us look at the electric field of the last section in a bit more detail. It
consists of an oscillation with the central frequency ω under an envelope and
is plotted for a certain choice of parameters in Fig. 1.8.

The parameters in Fig. 1.8 have been chosen such that the peak separation
does coincide with a half integer multiple of the period of the fundamental
oscillation. This results in the fact that the phase of the fundamental oscilla-
tion is different by π, whenever the envelope has reached its next maximum.
In general, this phase difference is the so-called carrier envelope phase (CEP)
∆ϕ, and later-on we will frequently adopt the form

E(t) = E0f(t) cos(ω(t)t + ∆ϕ) (1.25)
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Fig. 1.8. Laser field consisting of the superposition of 17 modes with central fre-
quency ν = 4, L = 3.0625, and α = 0 (all quantities in arbitrary units) as a function
of time
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Fig. 1.9. Schematic laser field oscillation under a single pulse envelope (in units of
E0) but with two different values of the carrier envelope phase as a function of time
in arbitrary units, analogous to the two different pulses depicted in Fig. 1.8

of the laser field with an amplitude E0 and an envelope function f(t), which
is chosen from a large variety of suitable analytic functions. In addition, the
frequency ω might be time-dependent and the carrier envelope phase can be
varied, leading to tremendous effects as we will see later. In Fig. 1.9, a single
pulse with oscillations corresponding to two different values of ∆ϕ is shown.
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1.3.3 Husimi Representation of Laser Pulses

As mentioned in Sect. 1.3.2, we will model a laser pulse by an oscillation
times a freely chosen pulse envelope. This is reasonable due to the fact that
arbitrarily formed laser pulses can be generated experimentally by so-called
pulse shapers [9]. We will make use of this fact in Chap. 5 in connection with
the control of chemical reactions. In the following, the representation of the
frequency content of general laser fields will be discussed.

A very intuitive way to characterize a laser pulse is given by a “windowed”
Fourier transformation (or Husimi transformation)

F (τ,Ω) =
∣
∣
∣
∣

∫ ∞

−∞
dtg(t − τ)E(t)e−iΩ(t−τ)

∣
∣
∣
∣

2

(1.26)

with the window function

g(t) = exp[−t2/(2σ2)]/
√

2πσ2. (1.27)

The function F (τ,Ω) depending on a time-like variable, as well as on a fre-
quency is also referred to as a spectrogram. It tells us at which time τ a certain
frequency Ω is present in the original signal E(t). The term frequency resolved
optical gating (FROG) is used for a measurement technique of a pulse which
is designed by using (1.26) [9, 11]. In the field of molecular spectra, the term
vibrogram [12] is used for a quantity which is constructed in a similar way
from a time-signal called auto-correlation function, to be defined in the next
chapter.

The case of two pulses which are temporally delayed with respect to each
other will occur frequently later-on. For such a so-called pump–dump pulse,
with slightly different central frequency of the pump versus the dump pulse, a
spectrogram is shown in Fig. 1.10. The frequency change and also the temporal
delay is clearly visible in the spectrogram. Also the case of a single pulse
with a so-called “up chirp” (central frequency increasing as a function of
time) or a “down chirp” (central frequency decreasing) are very obvious in a
corresponding Husimi plot. To verify this for a simple Gaussian pulse envelope,
a Gaussian integral has to be performed. This is by far not the last one that
appears in this book and for convenience some Gaussian integrals are collected
in Appendix 1.A.

Exercise 1.3 For the case of a linearly chirped frequency

ω(t) = ω0 ± λt/2

calculate and schematically depict the Husimi transform of the pulsed field

E(t) = E0 exp
[

− (t − t0)2

2σ2
+ iω0(t − t0) ± i

λ

2
(t − t0)2

]

.
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Fig. 1.10. Husimi transform of a pump–dump pulse as a function of τ and Ω in
arbitrary units

1.A Some Gaussian Integrals

Throughout this book, Gaussian integrals will be encountered. For complex-
valued parameters a and b with Re a ≥ 0, the following formulae hold:

∫ ∞

−∞
dx exp{−ax2} =

√
π

a
, (1.28)

∫ ∞

−∞
dxx exp{−ax2} = 0, (1.29)

∫ ∞

−∞
dxx2 exp{−ax2} =

(
1
2a

)√
π

a
, (1.30)

∫ ∞

−∞
dx exp{−ax2 + bx} =

√
π

a
exp
{

b2

4a

}

, (1.31)

∫ ∞

−∞
dxx exp{−ax2 + bx} =

(
b

2a

)√
π

a
exp
{

b2

4a

}

, (1.32)

∫ ∞

−∞
dxx2 exp{−ax2 + bx} =

(
1
2a

)(

1 +
b2

2a

)√
π

a
exp
{

b2

4a

}

. (1.33)

A generalization of one of the formulae given above to the case of a
d-dimensional integral that is helpful is
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∫

ddx exp{−x · Ax + b · x} =

√

πd

detA
exp
{

1
4
b · A−1b

}

. (1.34)

As in the 1d-case, it can be proven by using a “completion of the square”
argument. Furthermore, the convention that non-indication of the boundaries
implies integration over the whole range of the independent variables has
been used.

Notes and Further Reading

The theory of the laser is treated on the level of the rate equations as well
as in its full quantum version in the book by Haken [2] (the first book of the
series [1,2] contains the derivation of Plancks’s law, that we have followed) and
by Shimoda [3]. In these books one can also find a more detailed discussion
of the rate equations beyond the steady-state solution, especially concerning
the build up of the oscillation.

A lot of information on the experimental aspects of lasers and about mode
locking are contained in the book by Demtröder [6]. The handbook article by
Wollenhaupt et al. deals with the properties, the creation via mode locking,
and the measurement of femtosecond laser pulses [9]. It also contains a long list
of additional references. The characterization of short pulses by using FROGs
is the topic of [9, 11].
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