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3.1 The Predicate Calculus 
In propositional calculus, each atomic symbol (P, Q, etc.) denotes a single 

proposition. There is no way to access the components of an individual assertion. 

Predicate calculus provides this ability. For example, instead of letting a single 

propositional symbol, P, denote the entire sentence “it rained on Tuesday,” we can 

create a predicate weather that describes a relationship between a date and the 

weather: weather (Tuesday, rain). Through inference rules we can manipulate 

predicate calculus expressions, accessing their individual components and inferring 

new sentences. 

 Predicate calculus also allows expressions to contain variables. Variables let us create 

general assertions about classes of entities. For example, we could state that for all 

values of X, where X is a day of the week, the statement weather(X, rain) is true; i.e., 

it rains every day.  

 

 

3.1.2 Predicate calculus symbols 
Predicate calculus symbol can be any derived from any of the following sets: set of 

letter, set of digit and the underscore (_). Any predicate calculus should symbol start 

with a letter. It may represent a variable, a constant, a function or predicate. 

Variable symbols are used to designate general classes of objects or properties in the 

world. Variables are represented by symbols beginning with an uppercase letter. Thus 

Ali, ISMAEL, and KAte are legal variables, whereas aLI and ismael are not. 

Constants name specific objects or properties in the world. Constant symbols must 

begin with a lowercase letter. Thus george, tree, tall, and blue are examples of well-

formed constant symbols. The constants true and false are reserved as truth symbols. 

Predicate calculus also allows functions on objects in the world of discourse. 

Function symbols (like constants) begin with a lowercase letter. Functions denote a 

mapping of one or more elements in a domain into unique element in the range 

Elements of the domain and range are objects in the world of discourse for instance 

father (ibrahim) → abdul for the father of ibrahim yielding the result abdul. 

Every function symbol has an associated arity, indicating the number of elements in 

the domain mapped onto each element of the range. Thus father could denote a 

function of arity 1 that maps people onto their (unique) male parent. plus could be a 

function of arity 2 that maps two numbers onto their arithmetic sum.  

 

 

D E F I N I T I O N 

SYMBOLS and TERMS 

Predicate calculus symbols include: 

1. Truth symbols true and false (these are reserved symbols). 

2. Constant symbols are symbol expressions having the first character lowercase. 

3. Variable symbols are symbol expressions beginning with an uppercase character. 

4. Function symbols are symbol expressions having the first character lowercase. 

Functions have an attached arity indicating the number of elements of the domain 

mapped onto each element of the range. 

A function expression consists of a function constant of arity n, followed by n 

terms,t1, t2,…,tn enclosed in parentheses and separated by commas. 

A predicate calculus term is either a constant, variable, or function expression. 
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3.1.3 Predicate logic and quantifiers 

Predicate logic (also called first order predicate logic) has a similar formalism like 

propositional logic. However, the capability of reasoning and knowledge 

representation using predicate logic is higher than propositional logic. For instance, it 

includes two more quantifiers, namely, the essential quantifier (∀ ) and the existential 

quantifier (). To illustrate the use of the quantifiers, let us consider the following 

pieces of knowledge. 
Knowledge 1 : All boys like sweets. 
Using predicate logic, we can write the above statement as 

 
Knowledge 2 : Some boys like flying kites. 
Using predicate logic, the above statement can be represented as 

 
You must know the following things  
For predicates p and q and variables X and Y: 

 
 

3.1.4 Semantics for the Predicate Calculus 
It is important to determine their meaning in terms of objects, properties, 

and relations in the world. Predicate calculus semantics provide a formal 

basis for determining the truth value of well-formed expressions. The 

truth of expressions depends on the mapping of constants, variables, 

predicates, and functions into objects and relations in the domain of 

discourse. The truth of relationships in the domain determines the truth of 

the corresponding expressions. 

For example, information about a person, George, and his friends Kate 

and Susie may be expressed by 

friends(george,susie) 

friends(george,kate) 

If it is indeed true that George is a friend of Susie and George is a friend 

of Kate then these expressions would each have the truth value 

(assignment) T. If George is a friend of Susie but not of Kate, then the 

first expression would have truth value T and the second would have truth 

value F. 

To use the predicate calculus as a representation for problem solving, we 

describe objects and relations in the domain of interpretation with a set of 
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well-formed expressions. The terms and predicates of these expressions 

denote objects and relations in the domain. This database of predicate 

calculus expressions, each having truth value T, describes the “state of 

the world”. The description of George and his friends is a simple 

example of such a database. 

Quantification of variables is an important part of predicate calculus 

semantics. When a variable appears in a sentence, such as X in 

likes(george,X), the variable functions as a placeholder. Any constant 

allowed under the interpretation can be substituted for it in the 

expression. Substituting kate or susie for X in likes(george,X) forms the 

statements likes(george,kate) and likes(george,susie) as we saw earlier. 

The variable X stands for all constants that might appear as the second 

parameter of the sentence. This variable name might be replaced by any 

other variable name, such as Y or PEOPLE, without changing the 

meaning of the expression. Thus the variable is said to be a dummy. In the 

predicate calculus, variables must be quantified in either of two ways: 

universally or existentially. A variable is considered free if it is not within 

the scope of either the universal or existential quantifiers. An expression 

is closed if all of its variables are quantified. A ground expression has no 

variables at all. In the predicate calculus all variables must be quantified. 

Parentheses are often used to indicate the scope of quantification, that is, 

the instances of a variable name over which a quantification holds. Thus, 

for the symbol indicating universal quantification, ∀ : 

 
indicates that X is universally quantified in both p(X) and r(X). Universal 

quantification introduces problems in computing the truth value of a 

sentence, because all the possible values of a variable symbol must be 

tested to see whether the expression remains true. For example, to test the 

truth value of ∀  X likes(george,X), where X ranges over the set of all 

humans, all possible values for X must be tested. If the domain of an 

interpretation is infinite, exhaustive testing of all substitutions to a 

universally quantified variable is computationally impossible: the 

algorithm may never halt. Because of this problem, the predicate calculus 

is said to be undecidable. Because the propositional calculus does not 

support variables, sentences can only have a finite number of truth 

assignments, and we can exhaustively test all these possible assignments. 

 
 

 

“Blocks World” Example of Semantic Meaning 
We conclude this section by giving an extended example of a truth value 

assignment to a set of predicate calculus expressions. Suppose we want to 
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model the blocks world of Figure   to design, for example, a control 

algorithm for a robot arm. We can use predicate calculus sentences to 

represent the qualitative relationships in the world: does a given block 

have a clear top surface? can we pick up block a? etc. Assume that the 

computer has knowledge of the location of each block and the arm and is 

able to keep track of these locations (using three-dimensional 

coordinates) as the hand moves blocks about the table. 

We must be very precise about what we are proposing with this “blocks 

world” example. First, we are creating a set of predicate calculus 

expressions that is to represent a static snapshot of the blocks world 

problem domain. This set of blocks offers an interpretation and a possible 

model for the set of predicate calculus expressions. 

Second, the predicate calculus is declarative, that is, there is no assumed 

timing or order for considering each expression. 

 

 
 

Figure: block world with its predicate calculus description 

To pick up a block and stack it on another block, both blocks must be 

clear. In Figure, block a is not clear. Because the arm can move blocks, it 

can change the state of the world and clear a block. Suppose it removes 

block c from block a and updates the knowledge base to reflect this by 

deleting the assertion on(c,a). The program needs to be able to infer that 

block a has become clear. The following rule describes when a block is 

clear:    

 
That is, for all X, X is clear if there does not exist a Y such that Y is on 

X.  

   This rule not only defines what it means for a block to be clear but also 

provides a basis for determining how to clear blocks that are not. For 
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example, block d is not clear, because if variable X is given value d, 

substituting b for Y will make the statement false. Therefore, to make this 

definition true, block b must be removed from block d. This is easily 

done because the computer has a record of all the blocks and their 

locations. 

Besides using implications to define when a block is clear, other rules 

may be added that describe operations such as stacking one block on top 

of another. For example: to stack X on Y, first empty the hand, then clear 

X, then clear Y, and then pick_up X and put_down X on Y. 

 
 

Note that in implementing the above description it is necessary to 

“attach” an action of the robot arm to each predicate such as 

pick_up(X). As noted previously, for such an implementation it was 

necessary to augment the semantics of predicate calculus by requiring 

that the actions be performed in the order in which they appear in a rule 

premise. However, much is gained by separating these issues from the 

use of predicate calculus to define the relationships and operations in the 

domain. 

The important question is not the uniqueness of interpretations, but 

whether the interpretation provides a truth value for all expressions in the 

set and whether the expressions describe the world in sufficient detail that 

all necessary inferences may be carried out by manipulating the symbolic 

expressions. 
 

 

 

 

 

 

3.2 Examples of English sentences represented in predicate 

calculus  

 
1. If it doesn’t rain on Monday, Tom will go to the mountains. 

     ￢ weather(rain, monday)→go(tom, mountains) 

2. Emma is a Doberman pinscher and a good dog. 

     gooddog(emma) ∧  isa(emma, doberman) 

3. All basketball players are tall. 

     ∀  X (basketball_player(X)→tall(X)) 

4. Some people like anchovies. 
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5. If wishes were horses, beggars would ride. 

     equal(wishes, horses)→ride(beggars) 

6. Nobody likes taxes. 

     
7. Everybody loves somebody  

      
8. There is some one who is loved by everyone  

      
 

 

9. Everyone dislikes parsnips 

     

 
 

  10. Everyone like ice cream  

 

 
 

 

Example : Rewrite the following sentences in FOL. 

1. Coconut-crunchy is a biscuit. 

2. Mary is a child who takes coconut-crunchy. 

3. John loves children who take biscuits. 

4. John loves Mary. 

 

The above statements can be represented in FOL using two quantifiers 

X & Y. 

1. Biscuit (coconut-crunchy) 

2. Child (mary) ∧  Takes (mary, coconut-crunchy) 

 

4. Loves (john, mary) 

 

Example: represent the following sentence in first order logic using 

consistent vocabulary (which must be define)  

a) Some student took French in spring 2001. 

The order of the quantification 

is very important  

The negation effect over quantification is very important  
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3.3 Using inference rule to produce predicate calculus expressions  

The semantics of the predicate calculus provides a basis for a formal 

theory of logical inference. The ability to infer new correct expressions 

from a set of true assertions is an important feature of the predicate 

calculus. These new expressions are correct in that they are consistent 

with all previous interpretations of the original set of expressions. 

Modus ponens and a number of other useful inference rules are defined 

below. 

D E F I N I T I O N 

MODUS PONENS, MODUS TOLLENS, AND ELIMINATION, AND 
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INTRODUCTION and UNIVERSAL INSTANTIATION 

If the sentences P and P → Q are known to be true, then modus ponens 

lets us infer Q. 

Under the inference rule modus tollens, if P → Q is known to be true and 

Q is known to be false, we can infer that P is false: ￢ P. 

And elimination allows us to infer the truth of either of the conjuncts 

from the truth of a conjunctive sentence. For instance, P ∧  Q lets us 

conclude P and Q 

are true. 

And introduction lets us infer the truth of a conjunction from the truth of 

its conjuncts. For instance, if P and Q are true, then P ∧  Q is true. 

Universal instantiation states that if any universally quantified variable 

in a true sentence, say p(X), is replaced by an appropriate term from the 

domain, the result is a true sentence. Thus, if a is from the domain of X, 

∀  X p(X) lets us infer p(a). 

 

As a simple example of the use of modus ponens in the propositional 

calculus, assume the following observations: “if it is raining then the 

ground is wet” and “it is raining.”If P denotes “it is raining” and Q is “the 

ground is wet” then the first expression becomes P → Q. Because it is 

indeed now raining (P is true), our set of axioms becomes 

P→Q 

P 

Through an application of modus ponens, the fact that the ground is wet 

(Q) may be added to the set of true expressions. 

Modus ponens can also be applied to expressions containing variables. 

Consider as an example the common syllogism “all men are mortal and 

Socrates is a man; therefore Socrates is mortal.” “All men are mortal” 

may be represented in predicate calculus by: 

∀  X (man(X)→mortal(X)). 

“Socrates is a man” is 

man(socrates). 

Because the X in the implication is universally quantified, we may 

substitute any value in the domain for X and still have a true statement 

under the inference rule of universal instantiation. By substituting 

socrates for X in the implication, we infer the expression 

 

man(socrates)→mortal(socrates). 

We can now apply modus ponens and infer the conclusion 

mortal(socrates). This is added to the set of expressions that logically 
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follow from the original assertions. An algorithm called unification can 

be used by an automated problem solver to determine that socrates may 

be substituted for X in order to apply modus ponens. More powerful rule 

of inference called resolution, which is the basis of many automated 

reasoning systems. 

 

3.4 Unification 
To apply inference rules such as modus ponens, an inference system must 

be able to determine when two expressions are the same or match. In 

propositional calculus, this is trivial: two expressions match if and only if 

they are syntactically identical. In predicate calculus, the process of 

matching two sentences is complicated by the existence of variables in 

the expressions. Universal instantiation allows universally quantified 

variables to be replaced by terms from the domain. This requires a 

decision process for determining the variable substitutions under which 

two or more expressions can be made identical (usually for the purpose of 

applying inference rules). 

Unification is an algorithm for determining the substitutions needed 

to make two predicate calculus expressions match. We have already seen 

this done in the previous subsection, where socrates in man(socrates) was 

substituted for X in ∀  X(man(X) ⇒ mortal(X)). This allowed the 

application of modus ponens and the conclusion mortal(socrates). 

Another example of unification was seen previously when dummy 

variables were discussed. Because p(X) and p(Y) are equivalent, Y may 

be substituted for X to make the sentences match. 

Unification and inference rules such as modus ponens allow us to 

make inferences on a set of logical assertions. To do this, the logical 

database must be expressed in an appropriate form. 

An essential aspect of this form is the requirement that all variables 

be universally quantified. This allows full freedom in computing 

substitutions. Existentially quantified variables may be eliminated from 

sentences in the database by replacing them with the constants that make 

the sentence true. For example, Ǝ X parent(X,tom) could be replaced by 

the expression parent(bob,tom) or parent(mary,tom), assuming that 

bob and mary are tom s parents under the interpretation. 

The process of eliminating existentially quantified variables is 

complicated by the fact that the value of these substitutions may depend 

on the value of other variables in the expression. For example, in the 

expression ∀  X Ǝ Y mother(X,Y), the value of the existentially 

quantified variable Y depends on the value of X. Skolemization replaces 

each existentially quantified variable with a function that returns the 

appropriate constant as a function of some or all of the other variables in 
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the sentence. In the above example, because the value of Y depends on X, 

Y could be replaced by a skolem function, f, of X. This yields the 

predicate ∀  X mother(X,f(X)). 

Unification is complicated by the fact that a variable may be replaced by 

any term, including other variables and function expressions of arbitrary 

complexity. These expressions may themselves contain variables. For 

example, father(jack) may be substituted for X in man(X) to infer that 

jack s father is mortal. 

Some instances of the expression 

foo(X,a,goo(Y)). 

generated by legal substitutions are given below: 

1) foo(fred,a,goo(Z)) 

2) foo(W,a,goo(jack)) 

3) foo(Z,a,goo(moo(Z))) 

In this example, the substitution instances or unifications that would 

make the initial expression identical to each of the other three are written 

as the sets: 

1) {fred/X, Z/Y} 

2) {W/X, jack/Y} 

3) {Z/X, moo(Z)/Y} 

The notation X/Y,… indicates that X is substituted for the variable Y in 

the original expression. Substitutions are also referred to as bindings. A 

variable is said to be bound to the value substituted for it. 

In defining the unification algorithm that computes the substitutions 

required to match two expressions, a number of issues must be taken into 

account. First, although a constant may be systematically substituted for a 

variable, any constant is considered a “ground instance” and may not be 

replaced. Neither can two different ground instances be substituted for 

one variable. Second, a variable cannot be unified with a term containing 

that variable. X cannot be replaced by p(X) as this creates an infinite 

expression: p(p(p(p(...X)...))). The test for this situation is called the 

occurs check. 

Furthermore, a problem-solving process often requires multiple 

inferences and, consequently, multiple successive unifications. Logic 

problem solvers must maintain consistency of variable substitutions. It is 

important that any unifying substitution be made consistently across all 

occurrences within the scope of the variable in both expressions being 

matched. This was seen before when socrates was substituted not only for 

the variable X in man(X) but also for the variable X in mortal(X). 

Once a variable has been bound, future unifications and inferences must 

take the value of this binding into account. If a variable is bound to a 

constant, that variable may not be given a new binding in a future 
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unification. If a variable X1 is substituted for another variable X2 and at a 

later time X1 is replaced by a constant, then X2 must also reflect this 

binding. The set of substitutions used in a sequence of inferences is 

important, because it may contain the answer to the original query. 

For example, if p(a,X) unifies with the premise of p(Y,Z) ⇒ q(Y,Z) with 

substitution {a/Y, X/Z}, modus ponens lets us infer q(a,X) under the 

same substitution. If we match this result with the premise of q(W,b) ⇒ 

r(W,b), we infer r(a,b) under the substitution set {a/W, b/X}. 

Another important concept is the composition of unification substitutions. 

If S and S′ are two substitution sets, then the composition of S and S′ 

(written SS′) is obtained by applying S′ to the elements of S and adding 

the result to S. Consider the example of composing the following three 

sets of substitutions: 

{X/Y, W/Z}, {V/X}, {a/V, f(b)/W}. 
Composing the third set, {a/V, f(b)/W}, with the second, {V/X}, 

produces: 

{a/X, a/V, f(b)/W}. 
Composing this result with the first set, {X/Y, W/Z}, produces the set of 

substitutions: 

{a/Y, a/X, a/V, f(b)/Z, f(b)/W}. 
Composition is the method by which unification substitutions are 

combined and returned in the recursive function unify, presented next. 

Composition is associative but not commutative. The exercises present 

these issues in more detail. 

A further requirement of the unification algorithm is that the unifier be as 

general as possible: that the most general unifier be found. This is 

important, as will be seen in the next example, because, if generality is 

lost in the solution process, it may lessen the scope of the eventual 

solution or even eliminate the possibility of a solution entirely. 

For example, in unifying p(X) and p(Y) any constant expression such 

as {fred/X,fred/Y} will work. However, fred is not the most general 

unifier; any variable would produce a more general expression: {Z/X, 

Z/Y}. The solutions obtained from the first substitution instance would 

always be restricted by having the constant fred limit the resulting 

inferences; i.e., fred would be a unifier, but it would lessen the generality 

of the result. 

D E F I N I T I O N 

MOST GENERAL UNIFIER (mgu) 

If s is any unifier of expressions E, and g is the most general unifier of 

that set of expressions, then for s applied to E there exists another unifier 

s′ such that Es =Egs′, where Es and Egs′ are the composition of unifiers 

applied to the expression E. 
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The most general unifier for a set of expressions is unique except for 

alphabetic variations; i.e., whether a variable is eventually called X or Y 

really does not make any difference to the generality of the resulting 

unifications. 

 

Unification is important for any artificial intelligence problem solver that 

uses the predicate calculus for representation. Unification specifies 

conditions under which two (or more) predicate calculus expressions may 

be said to be equivalent. This allows use of inference rules, such as 

resolution, with logic representations, a process that often requires 

backtracking to find all possible interpretations. 

 

We next present pseudo-code for a function, unify, that can compute the 

unifying substitutions (when this is possible) between two predicate 

calculus expressions. Unify takes as arguments two expressions in the 

predicate calculus and returns either the most general set of unifying 

substitutions or the constant FAIL if no unification is possible. It is 

defined as a recursive function: first, it recursively attempts to unify the 

initial components of the expressions. If this succeeds, any substitutions 

returned by this unification are applied to the remainder of both 

expressions. These are then passed in a second recursive call to unify, 

which attempts to complete the unification. The recursion stops when 

either argument is a symbol (a predicate, function name, constant, or 

variable) or the elements of the expression have all been matched. 

To simplify the manipulation of expressions, the algorithm assumes a 

slightly modified syntax. Because unify simply performs syntactic pattern 

matching, it can effectively ignore the predicate calculus distinction 

between predicates, functions, and arguments. By representing an 

expression as a list (an ordered sequence of elements) with the predicate 

or function name as the first element followed by its arguments, we 

simplify the manipulation of expressions. Expressions in which an 

argument is itself a predicate or function expression are represented as 

lists within the list, thus preserving the structure of the expression. Lists 

are delimited by parentheses, ( ), and list elements are separated by 

spaces. Examples of expressions in both predicate calculus, PC, and list 

syntax include: 
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3.4.1 Unification Example 
The behavior of the preceding algorithm may be clarified by tracing the call 

unify((parents X (father X) (mother bill)), (parents bill (father bill) Y)). 

When unify is first called, because neither argument is an atomic symbol, 

the function will attempt to recursively unify the first elements of each 

expression, calling 

 
unify(parents, parents). 

This unification succeeds, returning the empty substitution, { }. Applying 

this to the remainder of the expressions creates no change; the algorithm 

then calls 
unify((X (father X) (mother bill)), (bill (father bill) Y)). 

A tree depiction of the execution at this stage appears in Figure. 
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In the second call to unify, neither expression is atomic, so the algorithm 

separates each expression into its first component and the remainder of 

the expression. This leads to the call 

unify(X, bill). 

This call succeeds, because both expressions are atomic and one of them 

is a variable. The call returns the substitution {bill/X}. This substitution is 
applied to the remainder of each expression and unify is called on the results, as in 

Figure 

unify(((father bill) (mother bill)), ((father bill)Y)). 

The result of this call is to unify (father bill) with (father bill). This leads to the calls 

unify(father, father) 

unify(bill, bill) 

unify(( ), ( )) 

Unify is then called on the remainder of the expressions: 

unify(((mother bill)), (Y)). 

This, in turn, leads to calls 

unify((mother bill), Y) 

unify(( ),( )). 

In the first of these, (mother bill) unifies with Y. Notice that unification substitutes the 

whole structure (mother bill) for the variable Y. Thus, unification succeeds and 

returns thesubstitution {(mother bill)/Y}. The call 

unify(( ),( )) 

returns { }. All the substitutions are composed as each recursive call terminates, to 

return the answer {bill/X (mother bill)/Y}. A trace of the entire execution appears in 

Figure . Each call is numbered to indicate the order in which it was made; the 

substitutions returned by each call are noted on the arcs of the tree. 

 
        Figure       
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