Chapter Four

Functions

Definition 4.1. A function or a mapping from A to B, denoted by $f: A \rightarrow B$ is a relation f from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation. That is, each $a \in A$ the relation f contains exactly one ordered pair of form (a, b) and write $f(a)=b$.

Equivalent statements to the function definition.

(i) A relation f from A to B is function iff

$$
\forall x \in A \exists y \in B \text { such that }(x, y) \in f
$$

(ii) A relation f from A to B is function iff

$$
\forall x \in A \forall y, z \in B, \text { if }(x, y) \in f \wedge(x, z) \in f, \text { then } y=z
$$

(iii) A relation f from A to B is function iff

$$
\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right) \in f \text { such that if } x_{1}=x_{2} \text {, then } y_{1}=y_{2} .
$$

This property called the well-defined relation.

Example 4.2.

(i) Let $A=\{1,2,3,4\}$ and $B=\{2,4,5\}$.
(1) $R_{1}=\{(1,2),(2,4),(3,4),(4,5)\}$ function from A to B.
(2) $R_{2}=\{(1,2),(2,4),(2,5),(4,5)\}$ not a function.
(3) $R_{3}=\{(1,2),(2,4),(4,5)\}$ function from $\{1,2,4\}$ to B.
(4) $R_{4}=A \times B$ not a function.
(ii) Consider the relations described below.

Relation	Orderd pairs	Sample Relation
1	(person, month)	$\{(\mathrm{A}, \mathrm{May}),(\mathrm{B}, \mathrm{Dec}),(\mathrm{C}, \mathrm{Oct}), .\}$.
2	(hours, pay)	$\{(12,84),(4,28),(6,42),(15,105), \ldots\}$
3	(instructor, course)	$\{(\mathrm{A}, \mathrm{MATH001}),(\mathrm{A}, \mathrm{MATH002}), \ldots\}$
4	(time, temperature)	$\left\{\left(8,70^{\circ}\right),\left(10,78^{\circ}\right),\left(12,78^{\circ}\right), \ldots\right\}$

The first relation is a function because each person has only one birth month. The second relation is a function because the number of hours worked at a particular job can yield only one paycheck amount.
The third relation is not a function because an instructor can teach more than one course.
The fourth relation is a function. Note that the ordered pairs $\left(10,78^{\circ}\right),\left(12,78^{\circ}\right)$ do not violate the definition of a function.
(iii) Decide whether each relation represents a function.
a. Input: a, b, c
Output: 2, 3, 4
$\{(a, 2),(b, 3),(c, 4)\}$
b.

c.

Input \boldsymbol{x}	Output \boldsymbol{y}	(x, y)
3	1	$(3,1)$
4	3	$(4,3)$
5	4	$(5,4)$
3	2	$(3,2)$

Solution.

a. This set of ordered pairs does represent a function. No first component has two different second components.
b. This diagram does represent a function. No first component has two different second components.
c. This table does not represent a function. The first component 3 is paired with two different second components, 1 and 2.

Notation 4.3. We write $f(a)=b$ when $(a, b) \in f$ where f is a function. We say that b is the image of a under f, and a is a preimage of b.

Definition 4.4. Let $f: A \rightarrow B$ be a function from A to B.
(i) The set A is called the domain of $f,(\boldsymbol{D}(\boldsymbol{f}))$, and the set B is called the codomain of f.
(ii) The set $f(A)=\{f(x) \mid x \in A\}$ is called the range of $f,(\boldsymbol{R}(\boldsymbol{f}))$.

Remark 4.5.

(i) Think of the domain as the set of possible "input values" for f.
(ii) Think of the range as the set of all possible "output values" for f.

Example 4.6.

(i) Let $A=\{p, q, r, s\}$ and $B=\{0,1,2\}$ and

$$
f=\{(p, 0),(q, 1),(r, 2),(s, 2)\} \subseteq A \times B
$$

This is a function $f: A \rightarrow B$ because each element of A occurs exactly once as a first coordinate of an ordered pair in f.
We have $f(p)=0, f(q)=1, f(r)=2$ and $f(s)=2$. The domain of f is A, and the codomain and range are both B.

(a)

(b)

Figure. Two ways of drawing the function $f=\{(p, 0),(q, 1),(r, 2),(s, 2)\}$
(ii) Say a function $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ is defined as $f(m, n)=6 m-9 n$.

Note that as a set, this function is

$$
f=\{((m, n), 6 m-9 n):(m, n) \in \mathbb{Z} \times \mathbb{Z}\} \subseteq(\mathbb{Z} \times \mathbb{Z}) \times \mathbb{Z}
$$

What is the range of ?

To answer this, first observe that for any $(m, n) \in \mathbb{Z} \times \mathbb{Z}$, the value

$$
f(m, n)=6 m-9 n=3(2 m-3 n)
$$

is a multiple of 3 . Thus every number in the range is a multiple of 3 , so

$$
\begin{equation*}
R(f) \subseteq\{3 k: k \in \mathbb{Z}\} . \tag{1}
\end{equation*}
$$

On the other hand if $b=3 k$ is a multiple of 3 we have

$$
f(-k,-k)=6(-k)-9(-k)=-6 k+9 k=3 k,
$$

which means any multiple of 3 is in the range of f, so

$$
\begin{equation*}
\{3 k: k \in \mathbb{Z}\} \subseteq R(f) . \tag{2}
\end{equation*}
$$

Therefore, from (1) and (2) we get

$$
R(f)=\{3 k: k \in \mathbb{Z}\} .
$$

Definition 4.7. Two functions $f: A \rightarrow B$ and $g: C \rightarrow D$ are equal if $A=C, B=D$ and $f(x)=g(x)$ for every $x \in A$.

Example 4.8.

(i) Suppose that $A=\{1,2,3\}$ and $B=\{a, b\}$. The two functions $f=\{(1, a),(2, a),(3, b)\}$ and $g=\{(3, b),(2, a),(1, a)\}$ from A to B are equal because the sets f and g are equal. Observe that the equality $f=g$ means $f(x)=$ $g(x)$ for every $x \in A$.
(ii) Let $f(x)=\left(x^{2}-1\right) /(x-1)$ and $g(x)=x+1$, where $x \in \mathbb{R}$.
$f(x)=(x-1)(x+1) /(x-1)=(x+1)$.
$D(f)=\mathbb{R}-\{1\}, R(f)=\mathbb{R}-\{2\}$.
$D(g)=\mathbb{R}, R(f)=\mathbb{R}$.
$f \neq g$.

