Definition 4.9.

(i) A function $f: A \to B$ is **one-to-one** or **injective** if each element of *B* appears at most once as the image of an element of *A*. That is, a function $f: A \to B$ is injective if $\forall x, y \in A$, $f(x) = f(y) \Rightarrow x = y$ or $\forall x, y \in A, x \neq y \Rightarrow f(x) \neq f(y)$.

(ii) A function $f: A \to B$ is onto or surjective if f(A) = B, that is, each element of *B* appears at least once as the image of an element of *A*. That is, a function $f: A \to B$ is surjective if $\forall y \in B \exists x \in A$ such that f(x) = y.

(iii) A function $f : A \rightarrow B$ is **bijective** iff it is one-to-one and onto.

Example 4.10. Let $f : \mathbb{Z} \to \mathbb{Z}$ be a function defined as f(x) = 3x + 7.

$$f = \{\dots, (-3, -2), (-2, 1), (-1, 4), (0, 7), (1, 10), (2, 13), \dots\}.$$

(i) f is injective. Suppose otherwise; that is,

 $f(x) = f(y) \Rightarrow 3x + 7 = 3y + 7 \Rightarrow 3x = 3y \Rightarrow x = y$

(ii) f is not surjective. For b = 2 there is no a such that f(a) = b; that is, 2 = 3a + 7 holds for $a = -\frac{5}{3}$ which is not in \mathbb{Z} .

Example 4.11.

(i) Show that the function f : R - {0} → R defined as f(x) = (1/x) + 1 is injective but not surjective.
Solution.
We will use the contrapositive approach to show that f is injective.
Suppose x, y ∈ R - {0} and f(x) = f(y). This means

¹/_x + 1 = ¹/_y + 1 → x = y. Therefore f is injective.

Function f is not surjective because there exists an element b = 1 ∈ R for which f(x) = (1/x) + 1 ≠ 1 for every x ∈ R.
(ii) Show that the function f: Z × Z → Z × Z defined by the formula f(m,n) = (m + n, m + 2n), is both injective and surjective.

Definition 4.12. The composition of functions $f: X \to Y$ with $g: Y \to Z$ is the function $g \circ f: X \to Z$ defined by $(g \circ f)(x) = g(f(x))$.

Remark 4.13.

(i) The composition $g \circ f$ can only be defined if the domain of g includes the range of f; that is, $R(f) \subseteq D(g)$, and the existence of $g \circ f$ does not imply that $f \circ g$ even makes sense.

(ii) The order of application of the functions in a composition is crucial and is read from right to left.

Example 4.14.

(i) Let $A = \{0,1,2,3\}, B = \{1,2,3\}, C = \{4,5,6,7\}$. If $f : A \to B$ and $g : B \to C$ are the functions defined as follows.

$$f = \{(0,2), (1,3), (2,2), (3,3)\}, g = \{(1,7), (2,4), (3,5)\}.$$

$$g \circ f = \{(0,4), (1,5), (2,4), (3,5)\}$$

Foundation of Mathematics 11 Mustansiriyah Uni.-College of Sci.-Dept. of Math. (2017-2018) Dr. Bassam Al-Asadi and Dr. Emad Al-zangana **Chapter 4**.functions

(ii) If $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are functions defined as follows.

 $f(x) = x^2$ and $g(x) = \sqrt{x}$. Then $(g \circ f)(x) = g(f(x)) = g(x^2) = \sqrt{x^2}$. Here $(f) = [0, \infty) \subseteq D(g) = [0, \infty)$.

Theorem 4.15.

(i) Suppose $f : A \to B$ and $g : B \to C$. If both f and g are injective, then $g \circ f$ is injective. If both f and g are surjective, then $g \circ f$ is surjective.

(ii) Composition of functions is associative. That is, if $f : A \to B$, $g : B \to C$ and $h: C \to D$, then $(g \circ f) \circ h = f \circ (g \circ h)$.

Proof.

(i) To prove $g \circ f$ is 1-1. Let $x, y \in A$ and $(g \circ f)(x) = (g \circ f)(y)$. To prove $x = (g \circ f)(y)$. *y*. $(g \circ f)(x) = g(f(x)) = g(f(y))$ Def. of • f(x) = f(y)Since *q* is 1-1 and Def. of 1-1on *q* Since f is 1-1 and Def. of 1-1on fx = y $\therefore g \circ f$ is 1-1.

To prove $g \circ f$ is onto. Let $z \in D$, to prove $\exists x \in A$ such that $(g \circ f)(x) = z$. (1) $\exists y \in B$ such that g(y) = z Since g is onto and Def. of onto on g (2) $\exists x \in A$ such that f(x) = y Since f is onto and Def. of onto on f From (1) and (2) we get $g(f(x)) = z \Longrightarrow (g \circ f)(x) = z$ Def. of \circ $\therefore g \circ f$ is onto. (ii) Exercise.

Theorem 4.16. Let $f : X \to Y$ be a function. Then f is bijective iff the inverse relation f^{-1} is a function from B to A. **Proof.**

Suppose $f : X \to Y$ is bijective. To prove f^{-1} is a function from *B* to *A*. (*) Let (y_1, x_1) and $(y_2, x_2) \in f^{-1}$ such that $y_1 = y_2$, to prove $x_1 = x_2$.

 (x_1, y_1) and $(x_2, y_2) \in f$ Def. of f^{-1} (x_1, y_1) and $(x_2, y_1) \in f$ By hypothesis (*) $x_1 = x_2$ Def. of 1-1 on f

 $\therefore f^{-1}$ is a function from *B* to *A*.

Conversely, suppose f^{-1} is a function from *B* to *A*, to prove $f : X \to Y$ is bijective, that is, 1-1 and onto.

1-1: Let $a, b \in X$ and f(a) = f(b). To prove a = b.

$(a, f(a))$ and $(b, f(b)) \in f$	Hypothesis (<i>f</i> is function)
$(a, f(a))$ and $(b, f(a)) \in f$	Hypothesis $(f(a) = f(b))$
$(f(a), a)$ and $(f(a), b) \in f^{-1}$	Def. of inverse relation f^{-1}
a = b	Since f^{-1} is function

 $\therefore f$ is 1-1.

onto: Let $b \in Y$. To prove $\exists a \in A$ such that f(a) = b.

$(b, f^{-1}(b)) \in f^{-1}$	Hypothesis (f^{-1} is a function from B to A)
$(f^{-1}(b),b) \in f$	Def. of inverse relation f^{-1}
Put $a = f^{-1}(b)$.	
$a \in A$ and $f(a) = b$	Hypothesis (f is function)
$\therefore f$ is onto.	