Definition 4.9.

(i) A function $f: A \rightarrow B$ is one-to-one or injective if each element of B appears at most once as the image of an element of A. That is, a function $f: A \rightarrow B$ is injective if $\forall x, y \in A, f(x)=f(y) \Rightarrow x=y$ or $\forall x, y \in A, x \neq y \Rightarrow f(x) \neq f(y)$.
(ii) A function $f: A \rightarrow B$ is onto or surjective if $f(A)=B$, that is, each element of B appears at least once as the image of an element of A. That is, a function $f: A \rightarrow$ B is surjective if $\forall y \in B \exists x \in A$ such that $f(x)=y$.
(iii) A function $f: A \rightarrow B$ is bijective iff it is one-to-one and onto.

Example 4.10. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function defined as $f(x)=3 x+7$.

$$
f=\{\ldots,(-3,-2),(-2,1),(-1,4),(0,7),(1,10),(2,13), \ldots\} .
$$

(i) f is injective. Suppose otherwise; that is,

$$
f(x)=f(y) \Rightarrow 3 x+7=3 y+7 \Rightarrow 3 x=3 y \Rightarrow x=y
$$

(ii) f is not surjective. For $b=2$ there is no a such that $f(a)=b$; that is, $2=$ $3 a+7$ holds for $a=-\frac{5}{3}$ which is not in \mathbb{Z}.

Example 4.11.

(i) Show that the function $f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$ defined as $f(x)=(1 / x)+1$ is injective but not surjective.

Solution.

We will use the contrapositive approach to show that f is injective.
Suppose $x, y \in \mathbb{R}-\{0\}$ and $f(x)=f(y)$. This means
$\frac{1}{x}+1=\frac{1}{y}+1 \rightarrow x=y$. Therefore f is injective.
Function f is not surjective because there exists an element $b=1 \in \mathbb{R}$ for which $f(x)=(1 / x)+1 \neq 1$ for every $x \in \mathbb{R}$.
(ii) Show that the function $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ defined by the
formula $f(m, n)=(m+n, m+2 n)$, is both injective and surjective.
Solution. Check
Definition 4.12. The composition of functions $f: X \rightarrow Y$ with $g: Y \rightarrow Z$ is the function $g \circ f: X \rightarrow Z$ defined by $(g \circ f)(x)=g(f(x))$.

Remark 4.13.

(i) The composition $g \circ f$ can only be defined if the domain of g includes the range of f; that is, $R(f) \subseteq D(g)$, and the existence of $g \circ f$ does not imply that $f \circ g$ even makes sense.
(ii) The order of application of the functions in a composition is crucial and is read from right to left.

Example 4.14.

(i) Let $A=\{0,1,2,3\}, B=\{1,2,3\}, C=\{4,5,6,7\}$. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are the functions defined as follows.

$$
\begin{aligned}
& f=\{(0,2),(1,3),(2,2),(3,3)\}, g=\{(1,7),(2,4),(3,5)\} . \\
& g \circ f=\{(0,4),(1,5),(2,4),(3,5)\}
\end{aligned}
$$

(ii) If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are functions defined as follows. $f(x)=x^{2}$ and $g(x)=\sqrt{x}$. Then $(g \circ f)(x)=g(f(x))=g\left(x^{2}\right)=\sqrt{x^{2}}$. Here $(f)=[0, \infty) \subseteq D(g)=[0, \infty)$.

Theorem 4.15.

(i) Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$. If both f and g are injective, then $g \circ f$ is injective. If both f and g are surjective, then $g \circ f$ is surjective.
(ii) Composition of functions is associative. That is, if $f: A \rightarrow B, g: B \rightarrow C$ and $h: C \rightarrow D$, then $(g \circ f) \circ h=f \circ(g \circ h)$.
Proof.
(i) To prove $g \circ f$ is 1-1. Let $x, y \in A$ and $(g \circ f)(x)=(g \circ f)(y)$. To prove $x=$ y.
$(g \circ f)(x)=g(f(x))=g(f(y)) \quad$ Def. of 。
$f(x)=f(y)$
Since g is 1-1 and Def. of $1-1$ on g
$x=y$
$\therefore g \circ f$ is 1-1.
To prove $g \circ f$ is onto. Let $z \in D$, to prove $\exists x \in A$ such that $(g \circ f)(x)=z$.
(1) $\exists y \in B$ such that $g(y)=z \quad$ Since g is onto and Def. of onto on g
(2) $\exists x \in A$ such that $f(x)=y \quad$ Since f is onto and Def. of onto on f

From (1) and (2) we get $g(f(x))=z \Rightarrow(g \circ f)(x)=z \quad$ Def. of \circ
$\therefore g \circ f$ is onto.
(ii) Exercise.

Theorem 4.16. Let $f: X \rightarrow Y$ be a function. Then f is bijective iff the inverse relation f^{-1} is a function from B to A.

Proof.

Suppose $f: X \rightarrow Y$ is bijective. To prove f^{-1} is a function from B to A.
(*) Let $\left(y_{1}, x_{1}\right)$ and $\left(y_{2}, x_{2}\right) \in f^{-1}$ such that $y_{1}=y_{2}$, to prove $x_{1}=x_{2}$.
$\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right) \in f \quad$ Def. of f^{-1}
$\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{1}\right) \in f \quad$ By hypothesis $(*)$
$x_{1}=x_{2} \quad$ Def. of 1-1 on f
$\therefore f^{-1}$ is a function from B to A.
Conversely, suppose f^{-1} is a function from B to A, to prove $f: X \rightarrow Y$ is bijective, that is, 1-1 and onto.

1-1: Let $a, b \in X$ and $f(a)=f(b)$. To prove $a=b$.
$(a, f(a))$ and $(b, f(b)) \in f$
$(a, f(a))$ and $(b, f(a)) \in f$
$(f(a), a)$ and $(f(a), b) \in f^{-1}$
$a=b$
$\therefore f$ is 1-1.
onto: Let $b \in Y$. To prove $\exists a \in A$ such that $f(a)=b$.
$\therefore f$ is onto.

Hypothesis (f is function)
Hypothesis $(f(a)=f(b))$
Def. of inverse relation f^{-1}
Since f^{-1} is function
$\left(b, f^{-1}(b)\right) \in f^{-1}$
$\left(f^{-1}(b), b\right) \in f$
Put $a=f^{-1}(b)$.
$a \in A$ and $f(a)=b$
Hypothesis (f is function)

