Chapter One

Some Types of Functions

1.Inverse Function and Its Properties

We start this section by restate some basic and useful concepts.

Definition 1.1.1. (Inverse of a Relation)

Suppose $R \subseteq A \times B$ is a relation between *A* and *B* then the inverse relation $R^{-1} \subseteq B \times A$ is defined as the relation between *B* and *A* and is given by

 $bR^{-1}a$ if and only if aRb.

That is, $R^{-1} = \{(b, a) \in B \times A : (a, b) \in R\}$. Definition 1.1.2. (Function)

(i) A relation f from A to B is said to be function iff

 $\forall x \in A \exists ! y \in B \text{ such that } (x, y) \in f$

(ii) A relation f from A to B is said to be function iff

 $\forall x \in A \ \forall y, z \in B$, if $(x, y) \in f \land (x, z) \in f$, then y = z.

(iii) A relation f from A to B is said to be function iff

 (x_1, y_1) and $(x_2, y_2) \in f$ such that if $x_1 = x_2$, then $y_1 = y_2$.

This property called **the well-defined relation**.

Notation 1.1.3. We write f(a) = b when $(a, b) \in f$ where f is a function. We say that b is the **image** of a under f, and a is a **preimage** of b.

Question 1.1.4. It is clear from Definition 1.1 and 1.2 that if $f : X \to Y$ is a function, does $f^{-1}: Y \to X$ exist? If Yes, does $f^{-1}: Y \to X$ is a function?

Example 1.1.5.

(i) Let $A = \{1,2,3\}, B = \{a,b\}$ and f_1 be a function from A to B defined below. $f_1 = \{(1,a), (2,a), (3,b)\}$. Then f_1^{-1} is ------. (ii) Let $A = \{1,2,3\}, B = \{a,b,c,d\}$ and f_2 be a function from A to B defined below.

 $f_2 = \{(1, a), (2, b), (3, d)\}$. Then f_2^{-1} is ------.

(iii) Let $A = \{1,2,3\}$, $B = \{a, b, c, d\}$ and f_3 be a function from A to B defined bellow. $f_3 = \{(1, a), (2, b), (3, a)\}$. Then f_3^{-1} is ------.

(iv) Let $A = \{1,2,3\}, B = \{a, b, c, \}$ and f_4 be a function from A to B defined below. $f_4 = \{(1, a), (2, b), (3, c)\}$. Then f_4^{-1} is ------.

(v) Let $A = \{1,2,3\}, B = \{a, b, c, \}$ and f_5 be a relation from A to B defined below. $f_5 = \{(1, a), (1, b), (3, c)\}$. Then f_5 is ------ and f_5^{-1} is ------.

Definition 1.1.6. (Inverse Function)

The function $f: X \to Y$ is said to be has inverse if the inverse relation $f^{-1}: Y \to X$ is function.

Example 1.1.7.

(i) $f : \mathbb{R} \to \mathbb{R}, f(x) = x + 3$, that is,

$$f = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = x + 3\}$$
$$f = \{(x, x + 3) \in \mathbb{R} \times \mathbb{R}\}.$$

Then

$$f^{-1} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : (y, x) \in f\}$$
$$f^{-1} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x = y + 3\}$$
$$f^{-1} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = x - 3\}$$
$$f^{-1} = \{(x, x - 3) \in \mathbb{R} \times \mathbb{R}\}, \text{ that is } f^{-1}(x) = x - 3.$$

 f^{-1} is function as shown below.

f

Let $(y_1, f^{-1}(y_1))$ and $(y_2, f^{-1}(y_2)) \in f^{-1}$ such that $y_1 = y_2$, T. P. $f^{-1}(y_1) = f^{-1}(y_2)$.

Since $y_1 = y_2$, then $y_1 - 3 = y_2 - 3$ (By add -3 to both sides) $\Rightarrow f^{-1}(y_1) = f^{-1}(y_2).$

(ii) $g : \mathbb{R} \to \mathbb{R}, f(x) = x^2$, that is,

$$g = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = x^2\}$$

Dr. Bassam Al-Asadi and Dr. Emad Al-zangana

Mustansiriyah Uni.-College of Sci.-Dept. of Math. (2017-2018) Dr. Bassam Al-Asadi and Dr. Emad Al-zangana

$$g = \{(x, x^2) \in \mathbb{R} \times \mathbb{R}\}.$$

Then

$$g^{-1} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : (y, x) \in g\}$$
$$g^{-1} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x = y^2\}$$

 $g^{-1}=\{(x,y)\in\mathbb{R}\times\mathbb{R}\colon y=\pm\sqrt{x}\}$

$$g^{-1} = \{(x, \pm \sqrt{x}) \in \mathbb{R} \times \mathbb{R}\}, \text{ that is } g^{-1}(x) = \pm \sqrt{x}$$

 g^{-1} is not function since $g^{-1}(4) = \pm 2$.

Theorem 1.1.8. Let $f : A \to B$ be a function. Then f is bijective iff the inverse relation f^{-1} is a function from B to A.

Proof.

Suppose $f : A \to B$ is bijective. To prove f^{-1} is a function from B to A. $f^{-1} \neq \emptyset$ since f is onto. (*) Let (y_1, x_1) and $(y_2, x_2) \in f^{-1}$ such that $y_1 = y_2$, to prove $x_1 = x_2$. (x_1, y_1) and $(x_2, y_2) \in f$ Def. of f^{-1}

 (x_1, y_1) and $(x_2, y_1) \in f$ By hypothesis (*)

 $x_1 = x_2$ Def. of 1-1 on *f*

 $\therefore f^{-1}$ is a function from *B* to *A*.

Conversely, suppose f^{-1} is a function from *B* to *A*, to prove $f : A \rightarrow B$ is bijective, that is, 1-1 and onto.

1-1: Let $a, b \in X$ and f(a) = f(b). To prove a = b.

Hypothesis (f is function)
Hypothesis $(f(a) = f(b))$
Def. of inverse relation f^{-1}
Since f^{-1} is function

∴ f is 1-1.

onto: Let $b \in Y$. To prove $\exists a \in A$ such that f(a) = b.

I Mustansiriyah Uni.-College of Sci.-Dept. of Math. (2017-2018) Dr. Bassam Al-Asadi and Dr. Emad Al-zangana

 $(b, f^{-1}(b)) \in f^{-1}$ Hypothesis $(f^{-1} ext{ is a function from } B ext{ to } A)$ $(f^{-1}(b), b) \in f$ Def. of inverse relation f^{-1} Put $a = f^{-1}(b)$.Hypothesis $(f ext{ is function})$ $a \in A ext{ and } f(a) = b$ Hypothesis $(f ext{ is function})$ $\therefore f ext{ is onto.}$

Definition 1.1.9. Let $f : X \to Y$ be a function and $A \subseteq X$ and $B \subseteq y$.

(i) The set $f(A) = \{f(x) \in Y : x \in A\} = \{y \in Y : \exists x \in A \text{ such that } y = f(x)\}$ is called the **direct image of A by f**.

(ii) The set $f^{-1}(B) = \{x \in X : f(x) \in B\}$ is called the inverse image of *B* with respect to *f*.

Example 1.1.10.

(i) Let
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^4 - 1$. $f^{-1}(15) = \{x \in \mathbb{R}: x^4 - 1 = 15\}$
= $\{x \in \mathbb{R}: x^4 = 16\} = \{-2, 2\}.$

(ii) Let
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = \begin{cases} -1, & -1 \le x < 0\\ 0, & 0 \le x < 1\\ 1, & 1 \le x < 2\\ 2, & 2 \le x < 3 \end{cases}$. $D(f) = [-1,3), R(f) = [-1,0], R(f$

 $f^{-1}(0) = [0,1). f^{-1}([1,3/2]) = [1,2).$

