Chapter One

Some Types of Functions

1.Inverse Function and Its Properties

We start this section by restate some basic and useful concepts.
Definition 1.1.1. (Inverse of a Relation)
Suppose $R \subseteq A \times B$ is a relation between A and B then the inverse relation $R^{-1} \subseteq$ $B \times A$ is defined as the relation between B and A and is given by

$$
b R^{-1} a \quad \text { if and only if } \quad a R b .
$$

That is, $R^{-1}=\{(b, a) \in B \times A:(a, b) \in R\}$.

Definition 1.1.2. (Function)

(i) A relation f from A to B is said to be function iff

$$
\forall x \in A \exists!y \in B \text { such that }(x, y) \in f
$$

(ii) A relation f from A to B is said to be function iff

$$
\forall x \in A \forall y, z \in B, \text { if }(x, y) \in f \wedge(x, z) \in f, \text { then } y=z
$$

(iii) A relation f from A to B is said to be function iff

$$
\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right) \in f \text { such that if } x_{1}=x_{2} \text {, then } y_{1}=y_{2} .
$$

This property called the well-defined relation.
Notation 1.1.3. We write $f(a)=b$ when $(a, b) \in f$ where f is a function. We say that b is the image of a under f, and a is a preimage of b.

Question 1.1.4. It is clear from Definition 1.1 and 1.2 that if $f: X \rightarrow Y$ is a function, does $f^{-1}: Y \rightarrow X$ exist? If Yes, does $f^{-1}: Y \rightarrow X$ is a function?

Example 1.1.5.

(i) Let $A=\{1,2,3\}, B=\{a, b\}$ and f_{1} be a function from A to B defined bellow. $f_{1}=\{(1, a),(2, a),(3, b)\}$. Then $f_{1}{ }^{-1}$ is \qquad
(ii) Let $A=\{1,2,3\}, B=\{a, b, c, d\}$ and f_{2} be a function from A to B defined bellow. $f_{2}=\{(1, a),(2, b),(3, d)\}$. Then f_{2}^{-1} is
(iii) Let $A=\{1,2,3\}, B=\{a, b, c, d\}$ and f_{3} be a function from A to B defined bellow. $f_{3}=\{(1, a),(2, b),(3, a)\}$. Then $f_{3}{ }^{-1}$ is \qquad
(iv) Let $A=\{1,2,3\}, B=\{a, b, c$,$\} and f_{4}$ be a function from A to B defined bellow. $f_{4}=\{(1, a),(2, b),(3, c)\}$. Then $f_{4}{ }^{-1}$ is \qquad
(v) Let $A=\{1,2,3\}, B=\{a, b, c$,$\} and f_{5}$ be a relation from A to B defined bellow. $f_{5}=\{(1, a),(1, b),(3, c)\}$. Then f_{5} is and $f_{5}{ }^{-1}$ is \qquad

Definition 1.1.6. (Inverse Function)

The function $f: X \rightarrow Y$ is said to be has inverse if the inverse relation $f^{-1}: Y \rightarrow X$ is function.

Example 1.1.7.

(i) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x+3$, that is,

$$
\begin{gathered}
f=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y=x+3\} \\
f=\{(x, x+3) \in \mathbb{R} \times \mathbb{R}\} .
\end{gathered}
$$

Then

$$
\begin{aligned}
& f^{-1}=\{(x, y) \in \mathbb{R} \times \mathbb{R}:(y, x) \in f\} \\
& f^{-1}=\{(x, y) \in \mathbb{R} \times \mathbb{R}: x=y+3\} \\
& f^{-1}=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y=x-3\} \\
& f^{-1}=\{(x, x-3) \in \mathbb{R} \times \mathbb{R}\}, \text { that is } f^{-1}(x)=x-3 .
\end{aligned}
$$

f^{-1} is function as shown below.
Let $\left(y_{1}, f^{-1}\left(y_{1}\right)\right)$ and $\left(y_{2}, f^{-1}\left(y_{2}\right)\right) \in f^{-1}$ such that $y_{1}=y_{2}$, T. P. $f^{-1}\left(y_{1}\right)=$ $f^{-1}\left(y_{2}\right)$.

Since $y_{1}=y_{2}$, then $y_{1}-3=y_{2}-3$ (By add -3 to both sides)
$\Rightarrow f^{-1}\left(y_{1}\right)=f^{-1}\left(y_{2}\right)$.
(ii) $g: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2}$, that is,

$$
g=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: y=x^{2}\right\}
$$

$$
g=\left\{\left(x, x^{2}\right) \in \mathbb{R} \times \mathbb{R}\right\} .
$$

Then

$$
\begin{gathered}
g^{-1}=\{(x, y) \in \mathbb{R} \times \mathbb{R}:(y, x) \in g\} \\
g^{-1}=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: x=y^{2}\right\} \\
g^{-1}=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y= \pm \sqrt{x}\} \\
g^{-1}=\{(x, \pm \sqrt{x}) \in \mathbb{R} \times \mathbb{R}\}, \text { that is } g^{-1}(x)= \pm \sqrt{x} .
\end{gathered}
$$

g^{-1} is not function since $g^{-1}(4)= \pm 2$.
Theorem 1.1.8. Let $f: A \rightarrow B$ be a function. Then f is bijective iff the inverse relation f^{-1} is a function from B to A.

Proof.

Suppose $f: A \rightarrow B$ is bijective. To prove f^{-1} is a function from B to A. $f^{-1} \neq \emptyset$ since f is onto.
$(*)$ Let $\left(y_{1}, x_{1}\right)$ and $\left(y_{2}, x_{2}\right) \in f^{-1}$ such that $y_{1}=y_{2}$, to prove $x_{1}=x_{2}$.
$\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right) \in f \quad$ Def. of f^{-1}
$\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{1}\right) \in f \quad$ By hypothesis ($*$)
$x_{1}=x_{2} \quad$ Def. of 1-1 on f
$\therefore f^{-1}$ is a function from B to A.
Conversely, suppose f^{-1} is a function from B to A, to prove $f: A \rightarrow B$ is bijective, that is, $1-1$ and onto.

1-1: Let $a, b \in X$ and $f(a)=f(b)$. To prove $a=b$.
$(a, f(a))$ and $(b, f(b)) \in f$
$(a, f(a))$ and $(b, f(a)) \in f$
$(f(a), a)$ and $(f(a), b) \in f^{-1}$
$a=b$
$\therefore f$ is 1-1.
onto: Let $b \in Y$. To prove $\exists a \in A$ such that $f(a)=b$.
$\left(b, f^{-1}(b)\right) \in f^{-1}$
$\left(f^{-1}(b), b\right) \in f$
Put $a=f^{-1}(b)$.
$a \in A$ and $f(a)=b \quad$ Hypothesis (f is function)
$\therefore f$ is onto.
Definition 1.1.9. Let $f: X \rightarrow Y$ be a function and $A \subseteq X$ and $B \subseteq y$.
(i) The set $f(A)=\{f(x) \in Y: x \in A\}=\{y \in Y: \exists x \in A$ such that $y=f(x)\}$ is called the direct image of \boldsymbol{A} by \boldsymbol{f}.
(ii) The set $f^{-1}(B)=\{x \in X: f(x) \in B\}$ is called the inverse image of \boldsymbol{B} with respect to f.
Example 1.1.10.
(i) Let $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{4}-1 . f^{-1}(15)=\left\{x \in \mathbb{R}: x^{4}-1=15\right\}$

$$
=\left\{x \in \mathbb{R}: x^{4}=16\right\}=\{-2,2\} .
$$

(ii) Let $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=\left\{\begin{array}{cc}-1, & -1 \leq x<0 \\ 0, & 0 \leq x<1 \\ 1, & 1 \leq x<2 . \\ 2, & 2 \leq x<3\end{array} . D(f)=[-1,3), R(f)=\right.$ $\{-1,0,1,2\}$.

$$
f([-1,-1 / 2])=-1 . f([-1,0])=\{-1,0\} .
$$

$$
f^{-1}(0)=[0,1) . f^{-1}([1,3 / 2])=[1,2) .
$$

