Definition 1.1.11.

(i) A function $I_{A}: A \rightarrow A$ defined by $I_{A}(x)=x$, for every $x \in A$ is called the identity function on A. $I_{A}=\{(x, x): x \in A\}$.
(ii) Let $A \subseteq X$. A function $i_{A}: A \rightarrow X$ defined by $i_{A}(x)=x$, for every $x \in A$ is called the inclusion function on A.

Theorem 1.1.12.
If $f: X \rightarrow Y$ is a bijective function, then $f \circ f^{-1}=I_{Y}$ and $f^{-1} \circ f=I_{X}$.

Proof. Exercise.

Example 1.1.13. Let $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ be a function defined as

$$
f(m, n)=(m+n, m+2 n) .
$$

f is bijective(Exercise).
To find the inverse f^{-1} formula, let $f(n, m)=(x, y)$. Then
$(m+n, m+2 n)=(x, y)$. So, the we get the following system

$$
\begin{align*}
m+n & =x \ldots .(1) \\
m+2 n & =y \ldots .(2) \tag{3}
\end{align*}
$$

From (1) we get $m=x-n$
$n=y-x \quad \operatorname{Inf}(2)$ and (3) (4)
$m=2 x-y \quad \operatorname{Rep}(n: y-x)$ or $\operatorname{sub}(4)$ in (3)
Define f^{-1} as follows

$$
f^{-1}(x, y)=(2 x-y, y-x)
$$

We can check our work by confirming that $f \circ f^{-1}=i_{Y}$.
$\left(f \circ f^{-1}\right)(x, y)=f(2 x-y, y-x)$

$$
\begin{aligned}
& =((2 x-y)+(y-x),(2 x-y)+2(y-x)) \\
& =(x, 2 x-y+2 y-2 x)=(x, y)=i_{Y}(x, y)
\end{aligned}
$$

Remark 1.1.14. If $f: X \rightarrow Y$ is oneto-one but not onto, then one can still define an inverse function $f^{-1}: R(f) \rightarrow X$ whose domain in the range of f.

Theorem 1.1.15. Let $f: X \rightarrow Y$ be a function.
(i) If $\left\{Y_{j} \subset Y: j \in J\right\}$ is a collection of subsets of Y, then

$$
f^{-1}\left(\cup_{j \in J} Y_{j}\right)=\bigcup_{j \in J} f^{-1}\left(Y_{j}\right) \text { and } f^{-1}\left(\bigcap_{j \in J} Y_{j}\right)=\bigcap_{j \in J} f^{-1}\left(Y_{j}\right)
$$

(ii) If $\left\{X_{i} \subset X: i \in I\right\}$ is a collection of subsets of X, then
$f\left(\cup_{i \in I} X_{i}\right)=\bigcup_{i \in I} f\left(X_{i}\right)$ and $f\left(\bigcap_{i \in I} X_{i}\right) \subseteq \bigcap_{i \in I} f\left(X_{i}\right)$.
(iii) If A and B are subsets of X such that $A=B$, then $f(A)=f(B)$. Then converse is not true.
(iv) If C and D are subsets of Y such that $C=D$, then $f^{-1}(C)=f^{-1}(D)$. Then converse is not true.
(v) If A and B are subsets of X, then $f(A)-f(B) \subseteq f(A-B)$. The converse is not true.
(vi) If C and D are subsets of Y, then $f^{-1}(C)-f^{-1}(D)=f^{-1}(C-D)$.

Proof:

(i) Let $x \in f^{-1}\left(\mathrm{U}_{j \in J} Y_{j}\right)$.
$\exists y \in \cup_{j \in J} Y_{j}$ such that $f(x)=y \quad$ Def. of inverse relation f^{-1}
$y \in Y_{j}$ for some $j \in J$
$x \in f^{-1}\left(Y_{j}\right)$
so $x \in \mathrm{U}_{j \in J} f^{-1}\left(Y_{j}\right)$

Def. of U
Def. of inverse f^{-1}
Def. of U

It follow that $f^{-1}\left(\mathrm{U}_{j \in J} Y_{j}\right) \subseteq \mathrm{U}_{j \in J} f^{-1}\left(Y_{j}\right) \quad$ Def. of $\subseteq \ldots . .(*)$
Conversely, If $x \in \cup_{j \in J} f^{-1}\left(Y_{j}\right)$, then $x \in f^{-1}\left(Y_{j}\right)$, for some $j \in J \quad$ Def. of U
So $f(x) \in Y_{j}$ and $f(x) \in \bigcup_{j \in J} Y_{j}$
Def. of inverse and U
$x \in f^{-1}\left(\mathrm{U}_{j \in J} Y_{j}\right)$
Def. of inverse f^{-1}
It follow that $\cup_{j \in J} f^{-1}\left(Y_{j}\right) \subseteq f^{-1}\left(\cup_{j \in J} Y_{j}\right)$
Def. of $\subseteq \ldots . .(* *)$

$$
f^{-1}\left(\cup_{j \in J} Y_{j}\right)=\cup_{j \in J} f^{-1}\left(Y_{j}\right)
$$

From (*), (**) and Def. of $=$
Example 1.1.16. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function defined as $f(x)=1$.
$\mathbb{Z}_{e} \cap \mathbb{Z}_{o}=\emptyset . f\left(\mathbb{Z}_{e} \cap \mathbb{Z}_{o}\right)=f(\varnothing)=\emptyset$. But $f\left(\mathbb{Z}_{e}\right) \cap f\left(\mathbb{Z}_{o}\right)=\{1\}$.

2.Types of Function

Definitions 1.2.1.

(i) (Constant Function)

The function $f: X \rightarrow Y$ is said to be constant function if there exist a unique element $b \in Y$ such that $f(x)=b$ for all $x \in X$.

(ii) (Restriction Function)

Let $f: X \rightarrow Y$ be a function and $A \subseteq X$. Then the function $g: A \rightarrow Y$ defined by $g(x)=f(x)$ all $x \in X$ is said to be restriction function of f and denoted by $g=$ $\left.f\right|_{A}$.
(iii) (Extension Function)

Let $f: A \rightarrow B$ be a function and $A \subseteq X$. Then the function $g: X \rightarrow B$ defined by $g(x)=f(x)$ all $x \in A$ is said to be extension function of f from A to X.

(iv) (Absolute Value Function)

The function $f: \mathbb{R} \rightarrow \mathbb{R}$ which defined as follows

$$
f(x)=|x|= \begin{cases}x, & x \geq 0 \\ -x & x<0\end{cases}
$$

is called the absolute value function.

(v) (Permutation Function)

Every bijection function f on a non empty set A is said to be permutation on A.
(vi) (Sequence)

Let A be a non empty set. A function $f: \mathbb{N} \rightarrow A$ is called a sequence in A and denoted by $\left\{f_{n}\right\}$, where $f_{n}=f(n)$.

(vii) (Canonical Function)

Let A be a non empty set, R an equivalence relation on A and A / R be the set of all equivalence class. The function $\pi: A \rightarrow A / R$ defined by $\pi(x)=[x]$ is called the canonical function.
(viii) (Projection Function)

Let A_{1}, A_{2} be two sets. The function $P_{1}: A_{1} \times A_{2} \rightarrow A_{1}$ defined by $P_{1}(x, y)=x$ for all $(x, y) \in A_{1} \times A_{2}$ is called the first projection.

The function $P_{2}: A_{1} \times A_{2} \rightarrow A_{2}$ defined by $P_{2}(x, y)=y$ for all $(x, y) \in A_{1} \times A_{2}$ is called the second projection.

(ix) (Cross Product of Functions)

Let $f: A_{1} \rightarrow A_{2}$ and $g: B_{1} \rightarrow B_{2}$ be two functions. The cross product of f with g, $f \times g: A_{1} \times B_{1} \rightarrow A_{2} \times B_{2}$ is the function defined as follows:

$$
(f \times g)(x, y)=(f(x), g(y)) \text { for all }(x, y) \in A_{1} \times B_{1} .
$$

