Definition 1.1.11.

(i) A function $I_A : A \to A$ defined by $I_A(x) = x$, for every $x \in A$ is called the **identity** function on *A*. $I_A = \{(x, x) : x \in A\}$.

(ii) Let $A \subseteq X$. A function $i_A : A \to X$ defined by $i_A(x) = x$, for every $x \in A$ is called the **inclusion** function on *A*.

Theorem 1.1.12.

If $f : X \to Y$ is a bijective function, then $f \circ f^{-1} = I_Y$ and $f^{-1} \circ f = I_X$.

Proof. Exercise.

Example 1.1.13. Let $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ be a function defined as

$$f(m,n) = (m+n,m+2n).$$

f is bijective(Exercise).

To find the inverse f^{-1} formula, let f(n, m) = (x, y). Then

(m + n, m + 2n) = (x, y). So, the we get the following system

$$m + n = x \dots (1)$$

 $m + 2n = y \dots (2)$

From (1) we get m = x - n (3)

n = y - x Inf (2) and (3) (4)

$$m = 2x - y$$
 Rep $(n: y - x)$ or sub(4) in (3)

Define f^{-1} as follows

$$f^{-1}(x,y) = (2x - y, y - x).$$

We can check our work by confirming that $f \circ f^{-1} = i_Y$.

$$(f \circ f^{-1})(x, y) = f(2x - y, y - x)$$

Foundation of Mathematics II Mustansiriyah Uni.-College of Sci.-Dept. of Math. (2017-2018) Dr. Bassam Al-Asadi and Dr. Emad Al-zangana

$$= ((2x - y) + (y - x), (2x - y) + 2(y - x))$$
$$= (x, 2x - y + 2y - 2x) = (x, y) = i_Y(x, y)$$

Remark 1.1.14. If $f : X \to Y$ is one-to-one but not onto, then one can still define an inverse function $f^{-1} : R(f) \to X$ whose domain in the range of f.

Theorem 1.1.15. Let $f : X \rightarrow Y$ be a function.

(i) If $\{Y_j \subset Y : j \in J\}$ is a collection of subsets of Y, then

$$f^{-1}(\bigcup_{j \in J} Y_j) = \bigcup_{j \in J} f^{-1}(Y_j) \text{ and } f^{-1}(\bigcap_{j \in J} Y_j) = \bigcap_{j \in J} f^{-1}(Y_j)$$

(ii) If $\{X_i \subset X : i \in I\}$ is a collection of subsets of X, then

$$f(\bigcup_{i\in I} X_i) = \bigcup_{i\in I} f(X_i) \text{ and } f(\bigcap_{i\in I} X_i) \subseteq \bigcap_{i\in I} f(X_i).$$

(iii) If A and B are subsets of X such that A = B, then f(A) = f(B). Then converse is not true.

(iv) If C and D are subsets of Y such that C = D, then $f^{-1}(C) = f^{-1}(D)$. Then converse is not true.

(v) If A and B are subsets of X, then $f(A) - f(B) \subseteq f(A - B)$. The converse is not true.

(vi) If *C* and *D* are subsets of *Y*, then $f^{-1}(C) - f^{-1}(D) = f^{-1}(C - D)$.

Proof:

(i) Let $x \in f^{-1}(\bigcup_{j \in J} Y_j)$. $\exists y \in \bigcup_{j \in J} Y_j$ such that f(x) = y Def. of inverse relation f^{-1} $y \in Y_j$ for some $j \in J$ Def. of \bigcup $x \in f^{-1}(Y_j)$ Def. of inverse f^{-1} so $x \in \bigcup_{j \in J} f^{-1}(Y_j)$ Def. of \bigcup

> 2 Dr. Bassam Al-Asadi and Dr. Emad Al-zangana

Mustansiriyah Uni.-College of Sci.-Dept. of Math. (2017-2018) Dr. Bassam Al-Asadi and Dr. Emad Al-zangana

It follow that
$$f^{-1}(\bigcup_{j \in J} Y_j) \subseteq \bigcup_{j \in J} f^{-1}(Y_j)$$
 Def. of $\subseteq \dots (*)$

Conversely, If $x \in \bigcup_{j \in J} f^{-1}(Y_j)$, then $x \in f^{-1}(Y_j)$, for some $j \in J$ Def. of \bigcup

So
$$f(x) \in Y_j$$
 and $f(x) \in \bigcup_{j \in J} Y_j$ Def. of inverse and \bigcup

$$x \in f^{-1}(\bigcup_{j \in J} Y_j)$$
 Def. of inverse f^{-1}

It follow that $\bigcup_{j \in J} f^{-1}(Y_j) \subseteq f^{-1}(\bigcup_{j \in J} Y_j)$ Def. of $\subseteq \dots (**)$

$$f^{-1}(\bigcup_{j \in J} Y_j) = \bigcup_{j \in J} f^{-1}(Y_j)$$
 From (*), (**) and Def. of =

Example 1.1.16. Let $f: \mathbb{Z} \to \mathbb{Z}$ be a function defined as f(x) = 1.

$$\mathbb{Z}_e \cap \mathbb{Z}_o = \emptyset. f(\mathbb{Z}_e \cap \mathbb{Z}_o) = f(\emptyset) = \emptyset. \text{ But } f(\mathbb{Z}_e) \cap f(\mathbb{Z}_o) = \{1\}.$$

2.Types of Function

Definitions 1.2.1.

(i) (Constant Function)

The function $f: X \to Y$ is said to be **constant function** if there exist a unique element $b \in Y$ such that f(x) = b for all $x \in X$.

(ii) (Restriction Function)

Let $f: X \to Y$ be a function and $A \subseteq X$. Then the function $g: A \to Y$ defined by g(x) = f(x) all $x \in X$ is said to be **restriction function** of *f* and denoted by $g = f|_A$.

(iii) (Extension Function)

Let $f: A \to B$ be a function and $A \subseteq X$. Then the function $g: X \to B$ defined by g(x) = f(x) all $x \in A$ is said to be **extension function** of *f* from *A* to *X*.

(iv) (Absolute Value Function)

The function $f: \mathbb{R} \to \mathbb{R}$ which defined as follows

$$f(x) = |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

is called the **absolute value function.**

(v) (Permutation Function)

Every bijection function f on a non empty set A is said to be **permutation** on A.

(vi) (Sequence)

Let *A* be a non empty set. A function $f: \mathbb{N} \to A$ is called a sequence in *A* and denoted by $\{f_n\}$, where $f_n = f(n)$.

(vii) (Canonical Function)

Let *A* be a non empty set, *R* an equivalence relation on *A* and *A*/*R* be the set of all equivalence class. The function $\pi: A \to A/R$ defined by $\pi(x) = [x]$ is called the **canonical function**.

(viii) (Projection Function)

Let A_1, A_2 be two sets. The function $P_1: A_1 \times A_2 \longrightarrow A_1$ defined by $P_1(x, y) = x$ for all $(x, y) \in A_1 \times A_2$ is called the **first projection.**

The function $P_2: A_1 \times A_2 \longrightarrow A_2$ defined by $P_2(x, y) = y$ for all $(x, y) \in A_1 \times A_2$ is called the **second projection.**

(ix) (Cross Product of Functions)

Let $f: A_1 \to A_2$ and $g: B_1 \to B_2$ be two functions. The cross product of f with g, $f \times g: A_1 \times B_1 \to A_2 \times B_2$ is the function defined as follows:

$$(f \times g)(x, y) = (f(x), g(y))$$
 for all $(x, y) \in A_1 \times B_1$.

4 Dr. Bassam Al-Asadi and Dr. Emad Al-zangana