Foundation of Mathematics II
 Chapter 3 Rational Numbers and Groups

Mustansiriyah University-College of Science-Department of Mathematics

Mustansiriyah University-College of Science-Department of Mathematics 2017-2018

1. Construction of Rational Numbers

Consider the set

$$
V=\{(r, s) \in \mathbb{Z} \times \mathbb{Z} \mid r, s \in Z, s \neq 0\}
$$

of pairs of integers. Let us define an equivalence relation on V by putting

$$
(r, s) L^{*}(t, u) \Leftrightarrow r u=s t \text {. }
$$

This is an equivalence relation. (Exercise).
Let

$$
[r, s]=\left\{(x, y) \in V \mid(x, y) L^{*}(\underset{r}{r}, s)\right\}
$$

denote the equivalence class of (r, s) and write $[r, s]=\frac{r}{s}$. Such an equivalence class $[r, s]$ is called a rational number.

Example 3.1.1.

$(2,12) L^{*}(1,6)$ since $2 \cdot 6=12 \cdot 1$,
$(2,12) \ell^{\nless}(1,7)$ since $2 \cdot 7 \neq 12 \cdot 1$.
$[0,1]=\{(x, y) \in V \mid 0 y=x 1\}=\{(x, y) \in V \mid 0=x\}=\{(0, y) \in V \mid y \in \mathbb{Z}\}$ $=\{(0, \pm 1),(0, \pm 2), \ldots\}$.

Definition 3.1.2. (Rational Numbers)

The set of all equivalence classes $[r, s]$ (rational number) with $(r, s) \in V$ is called the set of rational numbers and denoted by \mathbb{Q}.

3.1. 3. Addition and Multiplication on \mathbb{Q}

Addition: $\oplus: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q}$;

$$
[r, s] \oplus[t, u]=[r u+t s, s u], s, u \neq 0
$$

Multiplication: $\odot: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q}$;

$$
[r, s] \odot[t, u]=[r t, s u] s, u \neq 0
$$

Remark 3.1.4. The relation $i: \mathbb{Z} \rightarrow \mathbb{Q}$, defined by $i(n)=[n, 1]$ is $1-1$ function, and

$$
\begin{aligned}
& i(n+m)=i(n) \oplus i(m) \\
& i(n \cdot m)=i(n) \odot i(m)
\end{aligned}
$$

Theorem 3.1.5.
(i) $n \oplus m=m \oplus n$, $\forall n, m \in \mathbb{Q}$.
(ii) $(n \oplus m) \oplus c=n \oplus(m \oplus c), \forall n, m, c \in \mathbb{Q}$.
(iii) $n \odot m=m \odot n, \forall n, m \in \mathbb{Q}$.
(iv) $(n \odot m) \odot c=n \odot(m \odot c), \forall n, m, c \in \mathbb{Q}$. (Associative property of \odot)
(v) $(n \oplus m) \odot c=(n \odot c) \oplus(m \odot c)$
(vi) (Cancellation Law for \oplus). $m \oplus c=n \oplus c$, for some $c \in \mathbb{Q} \Leftrightarrow m=n$.
(vii) (Cancellation Law for \odot).

$$
m \odot c=n \odot c, \text { for some } c(\neq 0) \in \mathbb{Q} \Leftrightarrow m=n
$$

(viii) $[0,1]$ is the unique element such that $[0,1] \oplus m=m \oplus[0,1]=m, \forall m \in \mathbb{Q}$.
(ix) $[1,1]$ is the unique element such that $[1,1] \odot m=m \odot[1,1]=m, \forall m \in \mathbb{Q}$.

Proof.
(vi) Let $m=\left[m_{1}, m_{2}\right], n=\left[n_{1}, n_{2}\right], c=\left[c_{1}, c_{2}\right] \in \mathbb{Q}, m_{i}, n_{i}, c_{i} \in \mathbb{Z}, i=1,2$.
$m \oplus c=n \oplus c$
$\leftrightarrow\left[m_{1}, m_{2}\right] \oplus\left[c_{1}, c_{2}\right]=\left[n_{1}, n_{2}\right] \oplus\left[c_{1}, c_{2}\right]$
$\leftrightarrow\left[m_{1} c_{2}+c_{1} m_{2}, m_{2} c_{2}\right]=\left[n_{1} c_{2}+c_{1} n_{2}, n_{2} c_{2}\right] \quad$ Def. of \oplus for \mathbb{Q}
$\leftrightarrow\left(m_{1} c_{2}+c_{1} m_{2}, m_{2} c_{2}\right) L^{*}\left(n_{1} c_{2}+c_{1} n_{2}, n_{2} c_{2}\right)$
Def. of $[a, b]$
$\leftrightarrow\left(m_{1} c_{2}+c_{1} m_{2}\right) n_{2} c_{2}=\left(n_{1} c_{2}+c_{1} n_{2}\right) m_{2} c_{2}$
$\leftrightarrow\left(\left(m_{1} n_{2}\right) c_{2}+\left(n_{2} m_{2}\right) c_{1}\right) c_{2}=\left(\left(n_{1} m_{2}\right) c_{2}+\left(n_{2} m_{2}\right) c_{1}\right) c_{2}$
Properties of + and \cdot on \mathbb{Z}
$\leftrightarrow\left(m_{1} n_{2}\right) c_{2}+\left(n_{2} m_{2}\right) c_{1}=\left(n_{1} m_{2}\right) c_{2}+\left(n_{2} m_{2}\right) c_{1}$
Cancel. law for •
$\leftrightarrow\left(m_{1} n_{2}\right) c_{2}=\left(n_{1} m_{2}\right) c_{2}$
$\leftrightarrow\left(m_{1} n_{2}\right)=\left(n_{1} m_{2}\right)$
$\leftrightarrow\left(m_{1} n_{2}\right) L^{*}\left(n_{1} m_{2}\right)$
$\leftrightarrow\left[m_{1}, m_{2}\right]=\left[n_{1}, n_{2}\right]$
(Commutative property of \oplus)
(Associative property of \oplus)
(Commutative property of \odot)
(Distributive law of \odot on \oplus)
$\leftrightarrow\left(m_{1} n_{2}\right) L^{*}\left(n_{1} m_{2}\right)$
$\leftrightarrow\left[m_{1}, m_{2}\right]=\left[n_{1}, n_{2}\right]$
(i),(ii),(iii),(iv)(v),(viii),(ix) Exercise.

Definition 3.1.6.

(i) An element $[n, m] \in \mathbb{Q}$ is said to be positive element if $n m>0$. The set of all positive elements of \mathbb{Q} will denoted by \mathbb{Q}^{+}.
(ii) An element $[n, m] \in \mathbb{Q}$ is said to be negative element if $n m<0$. The set of all positive elements of \mathbb{Q} will denoted by \mathbb{Q}^{-}.

Remark 3.1.7. Let $[r, s]$ be any rational number. If $s<-1$ or $s=-1$ we can rewrite this number as $[-r,-s]$; that is, $[r, s]=[-r,-s]$.

Definition 3.1.8. Let $[r, s],[t, u] \in \mathbb{Q}$. We say that $[r, s]$ less than $[t, u]$ and denoted by

$$
[r, s]<[t, u] \Leftrightarrow r u<s t
$$

where $s, u>1$ or $s, u=1$.

Example 3.1.9.

$[2,5],[7,-4] \in \mathbb{Q}$.
$[2,5] \in \mathbb{Q}^{+}$, since $2=[2,0], 5=[5,0]$ in \mathbb{Z} and $2 \cdot 5=[2 \cdot 5+0 \cdot 0,2 \cdot 0+5 \cdot 0]$ $=[10,0]=+10>0$.
$[-4,7] \in \mathbb{Q}^{-}$, since $7=[7,0],-4=[0,4]$ in \mathbb{Z} and

$$
\begin{aligned}
7 \cdot(-4) & =[7 \cdot 0+0 \cdot 4,7 \cdot 4+0 \cdot 0] \\
& =[0,32]=-32<0 .
\end{aligned}
$$

$[-4,7]<[2,5]$, since $-4 \cdot 5<2 \cdot 7$.
$[7,-4]<[2,5]$, since $[7,-4]=[-7,-(-4)]=[-7,4]$, and $-7 \cdot 5<2 \cdot 4$.

2. Binary Operation

Definition 3.2.1. Let A be a non empty set. The relation $*: A \times A \rightarrow A$ is called a (closure) binary operation if $*(a, b)=a * b \in A, \forall a, b \in A$; that is, * is function.

Definition 3.2.2. Let A be a non empty set and $*$, be binary operations on A. The pair $(A, *)$ is called mathematical system with one operation, and the triple ($A, *$ $, \cdot)$ is called mathematical system with two operations.

Definition 3.2.3. Let $*$ and • be binary operations on a set A.
(i) $*$ is called commutative if $a * b=b * a, \forall a, b \in A$.
(ii) $*$ is called associative if $(a * b) * c=a *(b * c), \forall a, b, c \in A$.
(iii) • is called left distributive over * if

$$
(a * b) \cdot c=(a \cdot c) *(b \cdot c), \forall a, b, c \in A \text {. }
$$

(iv) \cdot is called right distributive over $*$ if

$$
a \cdot(b * c)=(a \cdot b) *(a \cdot c), \forall a, b, c \in A \text {. }
$$

Definition 3.2.4. Let $*$ be a binary operation on a set A.
(i) An element $\boldsymbol{e} \in A$ is called an identity with respect to $*$ if

$$
a * e=e * a=a, \forall a \in A
$$

(ii) If A has an identity element \boldsymbol{e} with respect to $*$ and $a \in A$, then an element b of A is said to be an inverse of \boldsymbol{a} with respect to $*$ if

$$
a * b=b * a=e \text {. }
$$

Example 3.2.5. Let X be a non empty set.
(i) $(P(X), \mathrm{U})$ formed a mathematical system with identity \emptyset.
(ii) $(P(X), \cap)$ formed a mathematical system with identity X.
(iii) $(\mathbb{N},+)$ formed a mathematical system with identity 0 .
(iv) $(\mathbb{Z},+)$ formed a mathematical system with identity 0 and $-a$ an inverse for every $a(\neq 0) \in \mathbb{Z}$.
(iv) $(\mathbb{Z} \backslash\{0\} ;)$ formed a mathematical system with identity 1 .

Theorem 3.2.6. Let $*$ be a binary operation on a set A.
(i) If A has an identity element with respect to $*$, then this identity is unique.
(ii) Suppose A has an identity element \boldsymbol{e} with respect to $*$ and $*$ is associative. Then the inverse of any element in A if exist it is unique.

Proof.

(i) Suppose \boldsymbol{e} and $\widehat{\boldsymbol{e}}$ are both identity elements of A with respect to *.
(1) $a * \boldsymbol{e}=\boldsymbol{e} * a=a, \forall a \in A \quad$ (Def. of identity)

And
(2) $a * \hat{\boldsymbol{e}}=\hat{\boldsymbol{e}} * a=a, \forall a \in A \quad$ (Def. of identity)
(3) $\hat{\boldsymbol{e}} * e=e * \hat{\boldsymbol{e}}=\hat{\boldsymbol{e}} \quad$ (Since (1) is hold for $a=\hat{\boldsymbol{e}}$)
(4) $e * \hat{\boldsymbol{e}}=\hat{\boldsymbol{e}} * e=\boldsymbol{e} \quad$ (Since (2) is hold for $a=\boldsymbol{e}$)
(5) $\boldsymbol{e}=\hat{\boldsymbol{e}} \quad$ (Inf. (3) and (4))
(ii) Let $a \in A$ has two inverse elements say b and c with respect to $*$. To prove $b=c$.
(1) $a * b=b * a=e \quad$ (Def. of inverse $(b$ inverse element of $a)$)
(2) $a * c=c \quad * a=e \quad$ (Def. of inverse $(c$ inverse element of $a)$)
(3) $b=b * e$
$=b *(a * c)$
$=(b * a) * c$
(Def. of identity)
(From (2) $\operatorname{Rep}(e: a * c)$)
(Since $*$ is associative)
$=e * c$
(From (i) $\operatorname{Rep}(b * a: e))$ and
$=c$
(Def. of identity).

Therefore; $b=c$.
Definition 3.2.7. A mathematical system with one operation, $(G, *)$ is said to be
(i) semi group if $(a * b) * c=a *(b * c), \forall a, b, c \in G$. (Associative law)
(ii) group if
(1) (Associative law) $(a * b) * c=a *(b * c), \forall a, b, c \in G$.
(2) (Identity with respect to $*$) There exist an element e such that $a * e=e *$ $a=a, \forall a \in A$.
(3) (Inverse with respect to *) For all $a \in G$, there exist an element $b \in G$ such that $a * b=b * a=e$.
(4) If the operation $*$ is commutative on G then the group is called commutative group; that is, $a * b=b * a, \forall a, b \in G$.

Example 3.2.8. (i) Let G be a non empty set. $(P(G), U)$ and $(P(G), \cap)$ are not group since it has no inverse elements, but they are semi groups.
(ii) $(\mathbb{N},+),(\mathbb{N}, \cdot)$ and (\mathbb{Z}, \cdot), are not groups since they have no inverse elements, but they are semi groups.
(iii) $(\mathbb{Z},+),(\mathbb{Q} \backslash\{0\}, \cdot)$, are commutative groups.

Symmetric Group 3.2.9.

Let $X=\{1,2,3\}$, and $S_{3}=$ Set of All permutations of 3 elements of the set X.

------------	---	
$\mathbf{3}$	2	1

There are 6 possiblities and all possible permutations of X as follows:

1			2			3			4								
1	2	3	1	3	2	2	1	3	2	3	1	3	1	2	3	2	1

Let $\sigma_{i}: X \rightarrow X, i=1,2, \ldots 6$, defined as follows:

$\begin{aligned} & \sigma_{1}(1)=1 \\ & \sigma_{1}(2)=2 \\ & \sigma_{1}(3)=3 \end{aligned}$	$\begin{aligned} & \sigma_{2}(1)=2 \\ & \sigma_{2}(2)=1 \\ & \sigma_{2}(3)=3 \end{aligned}$	$\left\lvert\, \begin{aligned} & \sigma_{3}(1)=3 \\ & \sigma_{3}(2)=2 \\ & \sigma_{3}(3)=1 \end{aligned}\right.$
$\sigma_{1}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right)=()$	$\sigma_{2}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right)=(12)$	$\sigma_{3}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right)=(13)$
$\begin{aligned} & \sigma_{4}(1)=1 \\ & \sigma_{4}(2)=3 \\ & \sigma_{4}(3)=2 \\ & \hline \end{aligned}$	$\begin{aligned} & \sigma_{5}(1)=2 \\ & \sigma_{5}(2)=3 \\ & \sigma_{5}(3)=1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \sigma_{6}(1)=3 \\ & \sigma_{6}(2)=1 \\ & \sigma_{6}(3)=2 \\ & \hline \end{aligned}$
$\sigma_{4}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right)=(23)$	$\sigma_{5}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)=(123)$	$\sigma_{6}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)=(132)$
$S_{3}=\left\{\sigma_{1}=()=e, \sigma_{2}\right.$), $\sigma_{3}=(13), \sigma_{4}=(23)=$,	$\left.(123), \sigma_{6}=(132)\right\}$.

- Define an arbitrary bijection

$$
\sigma_{4}=(23)=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)
$$

Note that $R_{240}=R_{120} \circ R_{120}=R_{120}{ }^{2}$.
Draw a vertical line through the top corner $\boldsymbol{i}, i=1,2,3$ and flip about this line.

1- If $i=1$ call this operation $F=F_{1}$.

2- If $i=2$ call this operation F_{1}.

3- If $i=3$ call this operation F_{3}.

Note that $F^{2}=F \circ F=\sigma_{1}$, representing the fact that flipping twice does nothing.

* All permutations of a set X of 3 elements form a group under composition。 of functions, called the symmetric group on 3 elements, denoted by S_{3}. (Composition of two bijections is a bijection).

\circ	$\boldsymbol{\sigma}_{\mathbf{1}}=\boldsymbol{e}$	$\boldsymbol{\sigma}_{\mathbf{2}}=(\mathbf{1 2)}$	$\boldsymbol{\sigma}_{\mathbf{3}}=(\mathbf{1 3})$	$\boldsymbol{\sigma}_{\mathbf{4}}=(\mathbf{2 3})$	$\boldsymbol{\sigma}_{\mathbf{5}}=(\mathbf{1 2 3})$	$\boldsymbol{\sigma}_{\mathbf{6}}=\mathbf{(1 3 2)}$
$\boldsymbol{\sigma}_{\mathbf{1}}=\boldsymbol{e}$	σ_{1}	σ_{2}	σ_{3}	σ_{4}	σ_{5}	σ_{6}
$\boldsymbol{\sigma}_{\mathbf{2}}=(\mathbf{1 2})$	σ_{2}	e	σ_{6}	σ_{5}	σ_{4}	σ_{3}
$\boldsymbol{\sigma}_{\mathbf{3}}=(\mathbf{1 3})$	σ_{3}	σ_{5}	e	σ_{6}	σ_{2}	σ_{4}
$\boldsymbol{\sigma}_{\mathbf{4}}=(\mathbf{2 3})$	σ_{4}	σ_{6}	σ_{5}	e	σ_{3}	σ_{2}
$\boldsymbol{\sigma}_{\mathbf{5}}=(\mathbf{1 2 3})$	σ_{5}	σ_{3}	σ_{4}	σ_{2}	σ_{6}	e
$\boldsymbol{\sigma}_{\mathbf{6}}=(\mathbf{1 3 2})$	σ_{6}	σ_{4}	σ_{2}	σ_{3}	e	σ_{5}

$$
\left.\begin{array}{rlrl}
\sigma_{3} & =\left(\begin{array}{ll|l}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right) & \sigma_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) \\
\sigma_{2} \circ \sigma_{3} & \sigma_{2} & =\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) & \sigma_{5} \circ \sigma_{2}
\end{array} \begin{array}{lll}
\sigma_{5} & =\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \\
\sigma_{6} & =\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) & \sigma_{3}
\end{array}\right)
$$

