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Inductance 

4.1. Self-Inductance 

Consider a circuit consisting of a switch, a resistor, and a source of emf, as 

shown in Figure 4.1. When the switch is thrown to its closed position, the 

current does not immediately jump from zero to its maximum value    . 

Faraday’s law of electromagnetic induction can be used to describe this 

effect as follows: as the current increases with time, the magnetic flux 

through the circuit loop due to this current also increases with time. This 

increasing flux creates an induced emf in the circuit. The direction of the 

induced emf is such that it would cause an induced current in the loop (if the 

loop did not already carry a current), which would establish a magnetic field 

opposing the change in the original magnetic field. Thus, the direction of the 

induced emf is opposite the direction of the emf of the battery; this results in 

a gradual rather than the instantaneous increase in the current to its final 

equilibrium value. Because of the direction of the induced emf, it is also 

called a back emf. This effect is called self-induction because the changing 

flux through the circuit and the resultant induced emf arise from the circuit 

itself. The emf     set up in this case is called a self-induced emf. 

To obtain a quantitative description of self-induction,                                          

we recall from Faraday’s law that the induced emf is                               

equal to the negative of the time rate of change of the                             

magnetic flux. The magnetic flux is proportional to                                               

the magnetic field due to the current, which in turn                                                

is proportional to the current in the circuit. Therefore,                                                                                                                                                                                              

a self-induced emf is always proportional to the time                                             

rate of change of the current. For any coil, we find that  

     
  

  
             

Where L is a proportionality constant called the inductance of the coil that 

depends on the geometry of the coil and other physical characteristics. 

Combining this expression with Faraday’s law,           ⁄   , we see 

Figure 4.1 
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that the inductance of a closely spaced coil of N turns (a toroid or an ideal 

solenoid) carrying a current I and containing N turns is: 

   
  

 
 

Where it is assumed that the same magnetic flux passes through each turn. 

From Equation 1, we can also write the inductance as the ratio 

   
  

    ⁄
 

The SI unit of inductance is the henry (H), and    
        

     
 

Example: (A) Calculate the inductance of an air-core solenoid containing 

300 turns if the length of the solenoid is 25cm and its cross-sectional area is 

4cm
2
. (B) Calculate the self-induced emf in the solenoid if the current it 

carries is decreasing at the rate of 50A/s.   

Solution:  
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4.2 RL Circuits 

Consider the circuit shown in Fig.4.2,                                                          

which contains a battery of negligible                                                             

internal resistance. This is an RL circuit                                                                        

because the elements connected to the battery                                                      

are a resistor and an inductor. Suppose that the switch S is open for t˂ 0 and 

then closed at t=0. The current in the circuit begins to increase, and a back 

emf (Eq.1) that opposes the increasing current is induced in the inductor.  

Because the current is increasing, dI/dt in Eq.1 is positive; thus, L is 

negative. This negative value reflects the decrease in electric potential that 

occurs in going from a to b across the inductor, as indicated by the positive 

and negative signs in Figure 4.2. With this in mind, we can apply 

Kirchhoff’s loop rule to this circuit, traversing the circuit in the clockwise 

direction: 

      
  

  
                    

Where  IR is the voltage drop across the resistor. (We developed Kirchhoff’s 

rules for circuits with steady currents, but they can also be applied to a 

circuit in which the current is changing if we imagine them to represent the 

circuit at one instant of time.) We must now look for a solution to this 

differential equation, which is similar to that for the RC circuit. 

A mathematical solution of Eq. 2. represents the current in the circuit as a 

function of time. To find this solution, we divided Eq.2 on R, and letting 

       ⁄     , so that        . With these substitutions, we can write 

Eq. 2 as: 

  
 

 

  

  
    

  

 
  

 

 
     

Integrating this last expression, we have 

Figure 4.2 
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∫
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where xo is the value of x at time t= 0. Taking the antilogarithm of this 

result, we obtain: 

      
   
  

Because I = 0 at t = 0, we note from the definition of x that      ⁄ . 

Hence, this last expression is equivalent to: 

 

 
   

 

 
  

   
  

  
 

 
     

   
   

This expression shows how the inductor effects the current. The current does 

not increase instantly to its final equilibrium value when the switch is closed 

but instead increases according to an exponential function. If we remove the 

inductance in the circuit, which we can do by letting L approach zero, the 

exponential term becomes zero and we see that there is no time dependence 

of the current in this case the current increases instantaneously to its final 

equilibrium value in the absence of the inductance. We can also write this 

expression as: 

  
 

 
     

  
    

Where the constant τ is the time constant of the RL circuit:      ⁄  

Physically,  τ is  the  time  interval  required  for  the  current  in  the  

circuit  to  reach                        of its final value    ⁄  . 
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The time constant is a useful parameter for comparing the time responses of 

various circuits. 

Example: (A) Find the time constant of the circuit shown in Figure. (B) The 

switch in Figure is closed at t = 0. Calculate the current in the circuit at              

t = 2ms.  

Solution: 

           
 

 
 

        

  
     

              
 

 
     

  
    

   

  
                  

4.3 Energy in a Magnetic Field 

Because the emf induced in an inductor prevents a battery from establishing 

an instantaneous current, the battery must provide more energy than in a 

circuit without the inductor. Part of the energy supplied by the battery 

appears as internal energy in the resistor, while the remaining energy is 

stored in the magnetic field of the inductor. If we multiply each term in Eq. 2 

by I and rearrange the expression, we have: 

      
  

  
                         

         
  

  
    

Recognizing      as the rate at which energy is supplied by the battery and 

IR
2 

as the rate at which energy is delivered to the resistor, we see that 

LI(dI/dt) must represent the rate at which energy is being stored in the 

inductor. If we let U denote the energy stored in the inductor at any time, 

then we can write the rate dU/dt at which energy is stored as: 
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To  find  the  total  energy  stored  in the inductor,  we can  rewrite  this  

expression  as dU = I L dI and integrate: 

   ∫   ∫     
 

 

  ∫    
 

 

 

  
 

 
                      

We can also determine the energy density of a magnetic field. When 

substitute:  

     
      and                    

 

   
        and        ⁄  

  
 

 
   

    
 

   
   

  

   
 

4.4 Mutual Inductance 

Consider the two closely wound coils of wire shown in cross-sectional view 

in Fig. 4.3. The current I1 in coil 1, which has N1 turns, creates a magnetic 

field. Some of the magnetic field lines pass through coil 2, which has N2 

turns. The magnetic flux caused by the current in coil 1 and passing through 

coil 2 is represented by Ф12. In analogy equation       ⁄  ,we define the 

mutual inductance M12 of coil 2 with respect to coil 1: 

   
     

  
                     

Mutual inductance depends on the geometry                                                   

of both circuits and on their orientation with                                                    

respect to each other. As the circuit separation                                               

distance increases, the mutual inductance                                             

decreases because the flux linking the circuits                                                

decreases. If the current I1 varies with time, we see from Faraday’s law and 

Eq. 3 that the emf induced by coil 1 in coil 2 is: 

      

    

  
    

 

  
 
     
  

      

   
  

 

Figure. 4.3 



Chapter four                                                                   Inductance  

41 
 

 If the current I2 varies with time, the emf induced by coil 2 in coil 1 is 

       

   
  

 

In mutual induction,  the emf  induced in one coil is  always proportional to 

the rate  at  which  the  current  in  the  other  coil  is  changing. 

4.5. Oscillations in an LC Circuit 

When a capacitor is connected to an inductor as illustrated in Fig. 4.4, the 

combination is an LC circuit. If the capacitor is initially charged and the 

switch is then closed, we find that both the current in the circuit and the 

charge on the capacitor oscillate between maximum positive and negative 

values. If the resistance of the circuit is zero, no energy is transformed to 

internal energy. In the following analysis, we neglect the resistance in the 

circuit. We also assume an idealized situation in which energy is not radiated 

away from the circuit. 

When the capacitor is fully charged, the energy                                                

U in the circuit is stored in the electric field of the                                            

capacitor and is equal to     
    . At this time, the                               

current in the circuit is zero, and therefore                                                                

no energy is stored in the inductor. After the                                                             

switch is closed, the rate at which charges leave or                                       

enter the capacitor plates (which is also the rate at which the charge on the 

capacitor changes) is equal to the current in the circuit. As the capacitor 

begins to discharge after the switch is closed, the energy stored in its electric 

field decreases. The discharge of the capacitor represents a current in the 

circuit, and hence some energy is now stored in the magnetic field of the 

inductor. Thus, energy is transferred from the electric field of the capacitor 

to the magnetic field of the inductor. When the capacitor is fully discharged, 

it stores no energy. At this time, the current reaches its maximum value, and 

all of the energy is stored in the inductor. The current continues in the same 

direction, decreasing in magnitude, with the capacitor eventually becoming 

fully charged again but with the polarity of its plates now opposite the initial 

polarity. This is followed by another discharge until the circuit returns to its 

Figure 4.4 
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original state of maximum charge Qmax and the plate polarity shown in 

Fig.4.4. The energy continues to oscillate between inductor and capacitor. 

Let us consider some arbitrary time t after the switch is closed, so that the 

capacitor has a charge Q ˂ Qmax and the current is I˂ Imax. At this time, both 

circuit elements store energy, but the sum of the two energies must equal the 

total initial energy U stored in the fully charged capacitor at t = 0: 

        
  

  
 

 

 
                 

Because  we  have  assumed the  circuit resistance  to  be  zero  and  we  

ignore  electromagnetic  radiation, no energy  is  transformed to  internal 

energy  and  none is transferred out of the system of the circuit. Therefore, 

the total energy of the system must remain constant in time. This means that 

dU/dt = 0. Therefore, by differentiating Equation1 with respect to time while 

noting that Q and I vary with time, we obtain: 

  

  
 

 

  
(
  

  
 

 

 
    )  

 

 
 
  

  
   

  

  
             

We can reduce this to a differential equation in one variable by remembering 

that the current in the circuit is equal to the rate at which the charge on the 

capacitor changes: I = dQ/dt. From this, it follows that dI/dt = d
2
Q/dt

2
. 

Substitution of these relation- ships into Eq.2 gives: 

 

 
   

   

   
    

   

   
  

 

  
                          

We can solve for Q by noting that this expression is of the same form as the 

analogous Eq.    
   

   
  

 

 
    and      

 

 
    for a block-spring system: 
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Where k is the spring constant, m is the mass of the block, and   √  ⁄     

the solution of this equation has the general form                 

Where   is the angular frequency of the simple harmonic motion, A is the 

amplitude of motion (the maximum value of x), and is the phase constant; 

the values of A and   depend on the initial conditions. Because Eq.3 is of 

the same form as the differential equation of the simple harmonic oscillator, 

we see that it has the solution; 

                                      

Where Qmax is the maximum charge of the capacitor and the angular 

frequency   is:  

  
 

√  
 

This is the natural frequency of oscillation of the LC circuit. Because Q 

varies sinusoidally with time, the current in the circuit also varies sinu- 

soidally. We can easily show this by differentiating Eq.4 with respect to 

time: 

  
  

  
                                     

To determine the value of the phase angle  , we examine the initial 

conditions, which in our situation require that at t = 0, I =0 and Q = Q max. 

Setting I = 0 at t = 0 in Eq.5, we have: 

                  substitute in eq.4 with the condition that Q = Qmax  at 

t = 0 we get Q and I 

                                   

                                             

Substitute eq.6 and eq.7 in eq.1 we get 
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Example: The Figure show, the capacitor is initially charged when switch 

S1 is open and S2 is closed. Switch S2 is then opened, removing the battery 

from the circuit, and the capacitor remains charged. Switch S1 is then closed, 

so that the capacitor is connected directly across the inductor.                             

(A) Find the frequency of oscillation of the circuit. (B) What are the 

maximum values of charge on the capacitor and current in the circuit? (C) 

Determine the charge and current as functions of time. 

Solution:  
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4.6. The RLC Circuit 

Let us assume  that  the  resistance  of  the  resistor  represents  all  

of  the  resistance  in  the circuit, as  shown  in  Fig.4.5. Now 

imagine that switch S1 is closed and S2 is open, so that the 

capacitor has an initial charge Q max. Next, S1 is opened and S2 is 

closed. Once S2 is closed and a current is established, the total 

energy stored in the capacitor and inductor at any time is given by 

Eq.         
  

  
 

 

 
     . However, this total energy is no 

longer constant, as it was in the LC circuit, because the resistor 

causes transformation to internal energy. Because the rate of 

energy transformation to internal energy within a resistor is I
2
R, 

we have: 

  

  
      

Where the negative sign signifies that the                                        

energy U of the circuit decreasing in time.                                       

Substituting this result into Eq.  
  

  
 

 

  
 
  

  
 

 

 
      

 

 

  

  
   

  

  
        gives: 

 

 

  

  
   

  

  
                        

 Substituted      
  

  
      in eq.1 we get 

  
   

   
 

 

 
                       

 
   

   
 

 

 
      

Figure 4.5 


