

Chapter
Three

INTERPOLATION

Introduction

 Interpolation is the estimation of values between data points.

 MATLAB has interpolation functions that are based on polynomials.

 In one-dimensional interpolation, each point has one independent variable (x) and one

dependent variable (y).

 In two-dimensional interpolation, each point has two independent variables (x and y) and

one dependent variable (z).

One-dimensional interpolation:

 If only two data points exist, the points can be connected with a straight line and a linear

equation can be used to estimate values between the points.

 If three (or four) data points exist, a second- (or a third-) order polynomial that passes

through the points can be determined and then be used to estimate values between the

points.

 As the number of points increases, a higher-order polynomial is required for the

polynomial to pass through all the points.

 A more accurate interpolation can be obtained, only a few data points in the neighborhood

where the interpolation is needed are considered, this method, called spline interpolation.

 The simplest method of spline interpolation is called linear spline interpolation.

 In this method, every two adjacent points are connected with a straight line.

 The equation of a straight line that passes through two adjacent points (xi, yi) and (xi+1,

yj+1) is given by:

 In a linear interpolation, the line between two data points has a constant slope, and there

is a change in the slope at every point. A smoother interpolation curve can be obtained

by using quadratic or cubic polynomials.

 In these methods, called quadratic splines and cubic splines, a second, or third-order

polynomial is used to interpolate between every two points.

 One-dimensional interpolation in MATLAB is done with the interp1 function, which

has the form:

 The vector x must be with elements in ascending or descending order.

 xi can be a scalar (interpolation of one point) or a vector (interpolation of many points).

yi is a scalar or a vector with the corresponding interpolated values.

 MATLAB can do the interpolation using one of several methods that can be specified.

These methods include:

 nearest −nearest neighbor interpolation

 linear −linear interpolation; this is the default interpolation

 spline −cubic spline interpolation; this does also extrapolation

 cubic −cubic interpolation; this requires equidistant values of x

 When the 'nearest' and the 'linear' methods are used, the value(s) of xi must be within

the domain of x. If the 'spline' or the 'cubic' pchip methods are used, xi can have values

outside the domain of x and the function interp1 performs extrapolation.

 The 'spline' method can give large errors if the input data points are non-uniform such

that some points are much closer together than others.

 Specification of the method is optional. If no method is specified, the default is 'linear‘.

Ex/ The following data points, which are points of the function f(x) = 1.5x cos(2x), are
given. Use linear, spline, and pchip interpolation methods to calculate the value of y
between the points. Make a figure for each of the interpolation methods.

SOLUTION

The three figures generated by the program are shown below. The data points are

marked with circles, the interpolation curves are plotted with dashed lines, and the function

is shown with a solid line. The left figure shows the linear interpolation, the middle is the

spline, and the figure on the right shows the pchip interpolation.

Other built in Interpolation Functions

1. interp2(x,y,z,xi,yi) is similar to interp1(x,y,xi) but performs two dimensional

interpolation.

2. interp2(x,y,z,xi,yi,’method’) is similar to interp1(x,y,xi,’method’) but performs two

dimensional interpolation. The default is linear. The spline method does not apply to two

dimensional interpolation.

Example

Generate the plot of the function

 𝒁 =
𝐬𝐢𝐧 𝑹

𝑹

in three dimensions. Here, R is a matrix that contains the distances from the origin to each

point in the pair of [X,Y] matrices that form a rectangular grid of points in the x-y plane.

Solution:

The matrix R that contains the distances from the origin to each point in the pair of [X, Y]

matrices, is

 𝑹 = √𝑿𝟐 + 𝒀𝟐

x=-2*pi: pi/24: 2*pi; % Define interval in increments of pi/24

y=x; % y must have same number of points as x

[X,Y]=meshgrid(x,y); % Create X and Y matrices

R=sqrt(X.^ 2 + Y.^ 2); % Compute distances from origin (0,0) to x&y points

Z=sin(R)./ (R+eps); % eps prevents division by zero

mesh(X,Y,Z); % Generate mesh plot for Z=sin(R)/R

xlabel('x'); ylabel('y'); zlabel('z');

title('Plot for the Three dimensional sin(R) / R Function')

Example

Generate the plot of the function

 z=x3+y3-3xy

in three dimensions , and use the cubic method to interpolate the value of z at x=-1 and y=2.

Solution:

x=-10: 0.25: 10; % Define interval in increments of 0.25

y=x; % y must have same number of points as x

[X,Y]=meshgrid(x,y); % Create X and Y matrices

 Z=X.^3+Y.^3-3.*X.*Y;

mesh(X,Y,Z); % Generate mesh plot

xlabel('x'); ylabel('y'); zlabel('z');

title('Plot for the Function of Example 7.14');

z_int=interp2(X,Y,Z, -1,2,'cubic');

fprintf(' \n')

fprintf('Interpolated Value of z at x = -1 and y = 2 is z = %4.2f \n',z_int)

fprintf(' \n')

Problems

1.

2.

