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Abstract

These class notes are designed for use of the instructor and students of the course PHYS-2020:
General Physics II taught by Dr. Donald Luttermoser at East Tennessee State University. These
notes make reference to the College Physics, 9th Edition (2012) textbook by Serway and Vuille.



III. Current & Resistance

A. Electric Current.

1. Current is defined as the rate at which charge flows through a

surface.

a) Mathematically:

I =
∆Q

∆t
, (III-1)

where I is the current, ∆Q is the amount of charge passing

through an area of wire, and ∆t is the time interval in

which ∆Q is measured.

b) Current is measured in amperes in the SI unit system:

1 A ≡ 1 C/s . (III-2)

2. The direction of current is defined to be the direction at which a

positive charge would flow through a wire.

A
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+
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a) In metals, it is electrons that flow and not positive charges

=⇒ the electrons flow in the opposite direction of the

current!

III–1
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b) Moving charge (whether positive or negative) through a

conductor is known as a mobile charge carrier.

3. Electrons flow in the opposite direction of the ~E-field.

a) As an electron (or any charged particle) moves through

a conductor, it collides with atoms (and/or molecules) in

the conductor =⇒ causes a zigzag motion through the

conductor.

b) The amount of charge passing through a wire can be de-

termined as follows:

i) Let A be the cross-sectional area of a wire and ∆x

be a small slice along the length of the wire.

ii) The volume of this small segment of the wire is

then V = A ∆x (note that V here is volume not

potential).

iii) Let N be the number of charge carriers contained

in this volume and q be the charge per carrier.

Then,

n =
N

V
=

N

A ∆x
,

represents the number of carriers per unit volume.

iv) The total charge contained in this volume is thus

∆Q = Nq = (n A ∆x) q . (III-3)

c) Although the electron makes a zigzag path through the

wire, on average, it continues to move down the electric

field (remember in the opposite sense) at an average speed
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called the drift speed vd:

vd =
∆x

∆t
=⇒ ∆x = vd ∆t .

We can then substitute this into Eq. (III-3) giving

∆Q = (n A vd ∆t) q . (III-4)

d) Dividing both sides by ∆t gives

∆Q

∆t
= I = n q vd A (III-5)

or

vd =
I

n q A
.

Since we normally talk about electrons in a metal wire,

we can rewrite this as

vd =
I

n |e|A
. (III-6)

e) If no current exists in a conductor, the electric field is

zero inside the conductor. However, if current exists, an

electric field exists inside the conductor (due to Maxwell’s

laws — see §IX of the notes).

Example III–1. Problem 17.7 (Page 611) from the Serway

& Vuille textbook: A 200-km long high-voltage transmission line

2.0 cm in diameter carries a steady current of 1000 A. If the con-

ductor is copper with a free charge density of 8.5 × 1028 electrons

per cubic meter, how long (in years) does it take one electron to

travel the full length of the cable? Added question: How long would

it take a photon to travel the same distance?

Solution:

The drift speed of electrons in the line is (from Eq. III-6)

vd =
I

n q A
=

I

n |e| (πD2/4)
,
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where I = 1000 A = 1000 C/s is the current, n = 8.5 × 1028

electrons/m3 is the charge carrier density, |e| = 1.60 × 10−19 C

is the charge per electron, and D = 2.0 cm = 0.020 m is the

diameter of the wire. Solving for the drift velocity gives

vd =
4(1000 C/s)

(8.5 × 1028 m−3)(1.60 × 10−19 C)π(0.020 m)2
= 2.3×10−4 m/s .

The time to travel the length L of the 200 km = 2.00 × 105 m

wire is then

∆t =
L

vd

=
2.00 × 105 m

2.34 × 10−4 m/s

(

1 yr

3.156 × 107 s

)

= 27.1 yr .

For the additional question, since light (i.e., photons) travels at

a speed of c = 3.00×108 m/s, the time it takes a photon to travel

this length is

∆t =
L

c
=

2.00 × 105 m

3.00 × 108 m/s
= 6.67 × 10−4 s = 667µs .

Note that even though an individual electron in the flow of elec-

tricity takes a long time to travel through the wire, the E-field

inside the wire propagates along the wire at the speed of light.

B. Resistance and Ohm’s Law.

1. Resistance is the ratio of voltage difference to current:

R ≡
∆V

I
. (III-7)

a) Measured in ohms:

Ω =
V

A
=

volts

amperes
. (III-8)
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b) Resistance measures how hard it is for electrons (or any

charged particle) to flow through material =⇒ it essen-

tially measures the number of internal collisions an elec-

tron (or any charged particle) has in a circuit.

c) The higher the resistance, the more collisions with internal

atoms/molecules that make up the wire or resistor. The

larger the number of collisions per second, the larger the

amount of heat generated in the wire or resistor.

2. Ohm’s Law: Resistance that remains constant over a wide range

of applied voltage differences such that the voltage difference is

linearly dependent on current:

∆V = I R . (III-9)

a) Materials that obey this law are called ohmic =⇒ con-

ductors are ohmic.

b) Materials that do not obey this law are called non-ohmic

=⇒ semiconductors are non-ohmic.

3. A resistor is a simple circuit element that provides a specific

resistance in an electric circuit. It’s symbol is
AA �

��A
AA�

��A
AA�

��A
AA�

��AA

C. Resistivity.

1. Since resistance is related to the number of collisions an electron

has with atoms/molecules of the wire, we can describe resistance

in terms of the geometric properties of the conductor and the

composition of the conductor (i.e., ohmic material):

R = ρ
L

A
, (III-10)
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where L is the length of the conductor, A is the cross-sectional

area of the conductor (both of these are the geometric part),

and ρ is the resistivity of the material (which is related to the

composition of the material — see Table 17.1 in the textbook).

2. Electric conductors have low resistivity, insulators have high re-

sistivity.

3. Resistivities can change with temperature (see §III.D).

Example III–2. Problem 17.17 (Page 611) from the Ser-

way & Vuille textbook: A wire 50.0 m long and 2.00 mm in diam-

eter is connected to a source with a potential difference of 9.11 V,

and the current is found to be 36.0 A. Assume a temperature of

20◦C and, using Table 17.1, identify the metal of the wire.

Solution:

From Ohm’s law (Eq. III-9) we can calculate the resistance of

the wire to be

R =
∆V

I
=

9.11 V

36.0 A
= 0.253 Ω .

The diameter of the wire is D = 2.00 mm = 2.00 × 10−3 m, so

the resistivity (using Eq. III-10) of the metal is

ρ =
R A

L
=

R (πD2/4)

L
=

(0.253 Ω)π(2.00 × 10−3 m)2

4(50.0 m)

= 1.59 × 10−8 Ω · m .

Comparing this value to those listed in Table 17.1 of the textbook,

the metal must be silver.
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D. Temperature Variation of Resistance.

1. For most metals, resistivity increases in an approximate linear

fashion with temperature:

ρ = ρ◦ [1 + α (T − T◦)] . (III-11)

a) ρ is the resistivity at some temperature T .

b) ρ◦ is the resistivity at some temperature T◦.

c) α is the temperature coefficient of resistivity (see

Table 17.1).

2. If a wire is of constant cross-sectional area A and length L with

respect to change in temperature, we can write

R = R◦ [1 + α (T − T◦)] . (III-12)

3. Thermometers that measure temperature from resistance in their

circuit are called thermistors (also called thermocouples).

Example III–3. At 40.0◦C, the resistance of a segment of gold

wire is 100.0 Ω. When the wire is placed in a liquid bath, the resis-

tance decreases to 97.0 Ω. What is the temperature of the bath?

(Hint: First determine the resistance of the gold wire at room tem-

perature.)

Solution:

If R = 100.0 Ω at T = 40.0◦C, then the resistance at T◦ = 20.0◦C

(i.e., room temperature) can be found with Eq. (III-12). The

thermal resistance coefficient for gold at 20.0◦C is α = 3.40×10−3

◦C−1, so

R◦ =
R

1 + α(T − T◦)
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=
100.0 Ω

1 + (3.40 × 10−3 ◦C−1) (40.0 ◦C − 20.0 ◦C)
= 93.6 Ω .

Now we once again use Eq. (III-12) to determine the temperature

of the bath. After a little algebra, we get

T = T◦ +
R − R◦

αR◦
= 20.0 ◦C +

97.0 Ω − 93.6 Ω

(3.40 × 10−3 ◦C−1) (93.6 Ω)

= 30.6 ◦C .

E. Superconductors.

1. There is a class of metals and compounds whose resistance vir-

tually goes to zero below a certain temperature, Tc, called the

critical temperature (see Figure 17.11 in the textbook).

2. These materials are known as superconductors.

3. Once current has been set up in a superconductor, it persists

without any applied voltage (since R = 0).

F. Electrical Energy and Power.

1. A battery can deliver power to an electric circuit. Power (as

covered in General Physics I) is the amount of work exerted over

an interval of time:

P =
W

∆t
. (III-13)

2. Since work is equal to the change of potential energy (see Eq.

II-3), we can write

W = ∆PE = q ∆V
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or

P = q
∆V

∆t
. (III-14)

3. If we have a current of charges ∆q across a voltage difference

∆V , we can rewrite Eq. (III-14) as

P = ∆q
∆V

∆t
= ∆V

∆q

∆t
= (∆V ) I

or

P = I ∆V . (III-15)

As we can see from this equation, the unit for power (W = watt)

must be equal to amperes times volts, or

1 W = A · V . (III-16)

4. Using Ohm’s law (Eq. III-9), we can also express Eq. (III-15) as

P = I2 R =
(∆V )2

R
. (III-17)

a) The power delivered to a conductor of resistance R is often

referred to as an I2R loss.

b) Note that Eq. (III-17) applies only to resistors (and other

ohmic devices) and not to non-ohmic devices like light

bulbs and diodes.

c) Electric companies measure the amount of power you have

used over the billing cycle (= total energy used). The

units used by the electric company are kilowatt-hour:

1 kWh = (103 W)(3600 s) = 3.60 × 106 J . (III-18)
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Example III–4. Problem 17.34 (Page 612) from the Ser-

way & Vuille textbook: If the electrical energy costs 12 cents per

kilowatt-hour, how much does it cost to (a) burn a 100-W lightbulb

for 24 hr, and (b) operate an electric oven for 5.0 hr if it carries a

current of 20.0 A at 220 V?

Solution (a):

The energy produced by the 100-W lightbulb in one day (24 hr)

is

E = P ·∆t = (100 W)(24 hr) = (0.100 kW)(24 hr) = 2.40 kWh ,

where kWh = kilowatt-hour. At a rate of R = 12-cents (= $0.12)

per kWh, the cost of this energy is

cost = E · R = (2.40 kWh)





$0.12

kWh





= $0.29 = 29 cents.

Solution (b):

Using Eq. (III-15), we see that the power of the electric oven is

P = I ∆V = (20.0 A)(220 V) = 4400 W = 4.40 kW .

The energy to run this over for 5.0 hr is

E = P · ∆t = (4.40 kW)(5.0 hr) = 22 kWh .

Using this with our cost-rate, we get

cost = E · R = (22 kWh)





$0.12

kWh





= $2.64 .


