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Fields and Galois T-L-eon/ .

1.26.

1.27.

1.29.

1.30.

1.31.

If H has index 2 in G, then the cosets, both left and right, must be H and
G\ H. Hence H is normal.

The group {Zn,+) consists of “powers”1, 1+1,141+1, ..., and so is cyclic,
generated by 1.

. Let G = {a) and let H be‘a proper’ subgroup of G. Then a ¢ H, and there

exists a smallest positive integer m with the property that a™ € H. If a" € H,
then m divides n, for n can be written as gm + r, with 0 < r < m — 1, and

a” = a™(a™)"? € H, a contradiction unless r = 0. Thus H is cyclic, generated
e e

Since b* = ¢? = e, both B and Q are subgroups. For B the cosets, both left and
right, are B, Ba = aB = {a,c}, Bp = pB = {p,r}, B¢ = qB = {q,s}. Thus B
is normal. For Q, the left cosets are Q, Qa = {a,p}, Qb = b, s}, Qe = {c, 1},

and the right cosets are Q, aQ = {a,7}, bQ = {b, s}, cQ = {c, p}. Thus Q is not
normal.

Define ¢ by
w(e) = pb) = ¢, vla) = p(c) =z, p(p) = ¢(r) =y v(a) = p(s) = =.

Let o(a) = m, o(b) = n. Since A is abelian, (ab)™" = (a™)*(b")™ = e, and so
o(ab) divides mn. In the given group, o(z) = o(y) = 2, but o{zy) = o(a) = 3.

Let H be a subgroup of G/N, and let K = {z € G : Nz € H}. Then K is a
subgroup of G, since z,y € K implies that Nz, Ny € H and so (Nz)(Ny) ' =
N(zy™') € H.Ify € N,then Ny= N € H andsoy € K. Thus K is a subgroup
of G containing N, and H = K/N = {Nz € G/H : z € K} . 'The subgroup H
is normal in G/N if and only if, for all Nz in G and all Ny in H,

(Nz) Y (Ny)(Nz) € H
that is, if and only if N(z™'yx) € H, that is (for all z in G and all y in K)
Ty € K,

that is, if and only if K is normal in G.

Chapter 2

2.1,

(i) 1218 = 846 + 372, 846 == 2 x 372 + 102, 372 = 3 x 102 * u6, 112 - 66 + 36,
66 = 36 + 30, 36 =: 30+ 6, 30 = 5 x 6. The last non-zer., remainder 1s 6, and
this is the greatest common divisor. Also, 6 = 36 — 30 ~ 36 - (66 — 36) =
2%36—66 = 2x(102—66)—66 = 2x102—3x66 = 2x 1U2--3(372~-3 x102) =
11x102-3x372=11x (846 -2 x 372) —3x 372 = 11 x 846 — 256 x 372 =
11 x 846 — 25(1218 — 846) = 36 x 846 — 25 x 1,218.

(ii) 851 = 779472, 779 = 10x 72459, 72 == 59+13. 59 = 4% 131 7, 13 = 7+6,
7 = 6+ 1. The greatest common divisor is 1. Also, 1 -6 = 7-{13-7)
2x7—-13=2(60-4x13)-13=2x59-9x13 = a4y - (72 - 59)
11x59—-9x72=11x (779 —10 % 72) -9 x 72==1¢ - /79 - VB xT2=
11 3¢ 779 — 119(851 — 779) == 130 x 779 — 119 x 851.
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2.2. Let D be an integral domain. Then it is embeddable in its field of quotients, by i
the results of Section 1.3. If Ris a commutative ring with unity which is not an
integral domain, then there exist a, bin R\ {0} such that ab = 0. This remains
true in any ring of which R is a subring, and so R cannot be embedded in a

field. - —

23. (1)

(i)

24. (i)
7

e

(i)
(iii)

25, (i)

(i)

(/(iii)

26. (i)

(i)
(iii)

()

Since a,b € I' implies that a/~ b,ab € I', we know that I is a subring of C.

From the previous exercise/ it must therefore be an integral domain. i

a:(u+m+(u—u')+i(v-—v)b=qb+'r,wherer= :

[(uw—u)+i(v— v")}b. Now r = a —gb, where a,q,b € I', and so r € I'. Also 3
§(r) = [(u—u)? + (v —0")*18(b) < 3 6(b) < 5(b) |

and so I' is a euclidean domain. .

If £,% € R, then p) sv, and so

TV — SU T

sv y

w13

u
S, 4
v

where = and y are obtained by dividing 7v — su and sv by their greatest

common divisor. Certainly z/y € R. A similar argument shows that
o

s T\ (U

b (G er

A non-zero element r/s in R has an inverse s /rin Rif and only if pJ 7.
Let I be a non-zero ideal in R. Let T = {PFrfsel :pfr}y.Hlo# 0, then

T contains a unit, and so I = R. Otherwise, let k be the smallest integer
such that Ix # 0, and let pr/s € I. If plu/v is an arbitrary element of I,
A

then | > k, and so < O
- ! -k k. o 0L“-’°‘+v‘\ 'Y
pu_p __ PT SM A
v 1 s U Menm [ aevi) ( Xxa i
and so plujfv € {(p*r/s). AR AR | R SRR S

Let u+ vi € I'. Then (u+ vi)(z + yi) = 1 is possible only if |u+ vi)® = L -
w? +v? = 1. Since u and v are integers, we must have u = £1,v = 0, or et Voo ¥
u = 0,v = 1. Thus the group of units is {1,—1,%, =i}~ G- . Va D
The number 5, while irreducible in Z, factorises in I" as (1+21) (21 —21). If we
suppose that (1+27) factorises into (a+bi) (zc+di), then (a®+b°)(*+d?) = L | ORI

|1 + 2i|* = 5. Hence one or other of a® + b2 and ¢ + d? is equal to 1, and . 3
so either a + bi or ¢ + di is a unit. Thus 1 + 24 (and similarly) 1 — 21) is

irreducible.

No, for 3+2i =i(2—3i) and 3—-2i = —i(2+31). Hence 3 +2i ~ 2 -3¢ and

3-2i~2+ 3t

fu=a+biv3andv=ct+ di/3, then p(uv) = (ac— 3bd)? + 3(ad + be)? =

a2c? + Ob3d? + 3a%d? 4 3b°¢* = (a® + 3b2)(c* + 3d%) = p(u)p(v). It is clear « N u/“
that ¢(0) = 0 and (1) = 1. Otherwise p(u) > 2. \/) Al a0\ AxT AL
With u and v as above, if uv = 1, then p(w)pv) = (1) = 1. This can™ x ¢ o

happen only if u = 1.

If 1 + iv/3 factorises non-trivially as (a + biv3)(c + di+/3), then, applying .
p, we obtain 4 = (a® + 362) (2 + 3d?). But each of the factors on the right (a wrw N C € x2at)
is greater than 2, and we have contradiction.

The integer 2 = 2+ 0i+/3 is also irreducible. We thus have that 4 = 2x 2 =
(14iv3)(1 - iv/3), and so R is not a unique factorisation domain.

\b
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2.7.

2.8.

>/ 2.9.

Ko 210

2.11.

% 2:12.

;( 2.13.

2.14.

Let f=ao+ar X +---,g=bo+b1X+---, h=co+c1+---. The coefficient of
X*in f(g+h) is . 3

Z ai(bj +¢;) = Z aib; + Z aic;)

{(6d) s i+j=k} ; {(&5d): iti=k} {(,9) s i+j=k}
and this is the coefficient of X* in fg+ fh.

@) X°+X+1=(X- l)gX2+X+1)+(X+2).
() X" +1=(X*-X)(X*+1)+ (X +1).
Consider, for example, the ideal *

I'=(2,X)={2f(X) + Xg(X) : f(z),9(X) € Z[X]},

consisting of all polynomials whose constant term is even. Suppose that I = (p)

for some polynomial p. Then p | 2 and p | X, and so p ~ 1. But then (p) =
ZIX] # 1.

Consider, for example, the ideal I = (X? Y?), and suppose that J = (f) for

some f in K[X,Y]. Then f | X® and f|Y?, and so f ~ 1 and {f) = K[X,Y].
But I # K[X,Y], since, for example, X ¢ I.

(i) First, X> + X* - 2X® - X?+ X = (X?+ X - 3)(X3+ X - 2) + (6X —6).
Next, X34+ X -2 = (%X2 +1X+ %)(6X — 6) + 0. The greatest common
divisor is 6X — 6 ) ~ X — 1, the last non-zero remainder, and 6X — 6 =
f—(X?+ X —3)g.

(i) First, X% +2X2 +7X —1 = (X — 1)(X? + 3X + 4) + (6X + 3). Next,
X®+3X +4=(3X+ £)(6X +3) + L. The greatest common diviscr is
i (~1), and

U= X2 43X +4— (X + £)(6X +3)
=X2 43X +4-(AX+ )PP +2X2 47X -8
— (X —1)(X%+3X +4))
=[1+GEX+ X -DI(X*+3X +4)
—GX+ )X +2X? 47X - 1)
=(3X2+ 31X+ 5NXP+3X +4)
— (X + )XP+2X? 47X —1).

The group Z, of non-zero elements of Z, is of order p - i, s w a? * =1
for all a in Z;. It follows that every element of Z, (includiug ) s & root of
the the polynomial X? — X. Thus, by Theorem 2.18, X? — X is divisible by
X(X —1)(X —2)...(X —(p—1)). Since this divisor, like X? -~ & 1iself, is monic
and of degree p, the two polynomials must be equal.

Suppose that f — g # 0; Then f — g, of degree not greater than n, is divisible
by (X — a1} (X — a2)...(X — ong1)- This is impossible, and so f - g =0.

By Gauss’s lemma, if this factorises over Q then it factoii«. ~wver Z. One of
the factors must be a linear factor X — o, and o = £1 <+ Since nore of
these four numbers is a root of the polynomial, it follows 1% <t e factorisation

is possible.
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15. These are all irreducible by the Eisenstein criterion, with p = 3, p = 2 and
p=>5.

16. Let Y = 1/X. Then 5X* —10X%+ 10X —3 = (—1/Y*)(3Y* — 10Y3 + 10Y 5).
Any non-trivial factorisation of 5X* — 10X3 4 10X — 3 would force a non-trivial
factorisation of 3Y* — 10Y3 + 10y — 5, and, by the Eisenstein criterion, this
cannot happen. ™

A X4 4X3 4 3X2 _oX 44= (X4 4X° +6X2 +4X +1) - 3X2 —6X +3 =
X+1)*-3X+1)2+6 = Y*-3Y2 16, where Y = X + 1. Any non-
trivial factorisation of X* + 4X® +3X? — 2X + 4 would force a factorisation of
Y4 -3y24 6, and, by the Eisenstein criterion, this cannot happen.

17. Let g = 4X* —2X? + X — 5. The corresponding polynomial in Z3[X] is § =
X*+ X? 4+ X + 1. This has no linear factors, since §(0) = 1, (1) = 1 and
g(—1) = —1. Suppose that

X4+X2+X+1:(X2+aX+b)(X2+cX+d).
Then

a+c=0(), ac+b+d=1 (i), ad+bc=1(iii), bd=1 (iv).

From (iv), either b = d = 1 or b = d = —1. In the former case (iii) becomes
a+ ¢ =1 and contradicts (i). In the latter case (iii) becomes a + ¢ = —1, again
a contradiction. Thus § is irreducible over Zs. Now any non-trivial factorisation
of g over Q would translate into a factorisation of g over Z3, and we have shown
that this cannot happen. Thus g is irreducible over Q.

Now let ¢ = 3X* —7X + 5,and let § = X* + X + 1 be the corresponding
polynomial in Z»[X]. This has no linear factor, since q(0) =q(1) =1.1If g

X4 X +1=(X*+aX +b)(X* +cX +d),
then

a+c=0(), ac+b+d=0 (i), ad+bc=1(iii), bd=1 (iv).

From (iv) we must have b = d = 1, and so (ii1) becomes a+c = 1, and contradicts
(i). Thus g, and hence also q, is irreducible.

‘Chapter 3

.1 (i) Since [M : K] = [M : L][L : K], it follows from [M : K| = [L : K] that
[M:Ll=1. Thus M = L. ‘

(if) Similarly, it follows from [M - L] = [M : K] that [L : K] = 1, and so ;
L=K.

3.2. Since [L: K] = [L : E][E : K] and [L : K] is prime, either [L : E] = 1 or
[E:K|=1 Thus either E=L or E = K.
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3.3.

3.4.

I)( 3.5.

3.6.

3.7.

3.8.

Let
b
M(a,b) = ( be o ) .

Define ¢ : F — Q[/n] by ¢<M (a, b)) = a + by/n. Then ¢ clearly maps onto
Q[+/n], and it is one-to-one, since " *

a+by/n=a +bn = a=a and b="¥". (12.2)

Next, ¢(M(a, b) + M(c, d)) = qS(M(a s e d)) (a+c) + (b+d)vn =
qS(M(a, b)) +¢(M(c, d)), and qS(M(a, b) M(c, d)) = ¢(M(ac nbd, ad+bc)) -
(ac+nbd) + (ad-+be)y/n = (a+by/m)(c+dy/n) = ¢(M(a,b)) ¢,(M(c, d)). Thus

¢ is an isomorphism.

If n is a perfect square, the implication (12:2) fails, and so ¢ is not one-to-one.
e

If b = 0, the minimum polynomial is X — a. So suppose that b # 0. Since

[Q[\/i] d (Q_)] = 2, the minimum polynomial of a + bv/2 must be of degree 2.

Since (a+ b\/»)2 = a? +2b® 4+ 2ab/2 = —a® 4 2b% + 2a(a + b+/2), the minimum
polynomial is X? — 2aX + (a® — 2b%).

If 8 € L\K, then [K(B) : K] > 2. Since K () C L we must have [K(8) : K] =

By Theorem 3.3, K(8) = L. Since 3 is algebraic over K, it must have a minimum -

polynomial, and the only possible degree is 2.

P +a-2=a(c?+2a+5)—2(c+2a+5)+8=38, and o -3 = (a®+2a+
5) — 20— 8 = —2a — 8. So

a3+a—2__ 4
a?—-3 ~  a+4’

Next, dividing X2 +2X +5 by X +4 gives X* +2X +5 = (X +4)(X - 2) +13,
and so (o + 4)(a — 2) = —13. Thus

o’ +a—2 4
- = (a—2
oz -3 ot 4 13(0‘ )-

Since 1 = —a® — q, it 1s clear that 1/a = (—o® — a)/a s. -o¢ ~ 1. Also,
(a+2)(a +pa+q)=a® +a+r if and only if p = ~2, 9 = 5 and v = 10. Thus
(e+2)(c®—2a+5) = (@®+a+1)+9=9,and so 1/(oz+ 2) - o - 20+ 5).

(i) Suppose, for a contradiction, that there Pmst a, b in {J sneh that /_ =
a + bv/2, where b must be non-zero, smce V3 is irrationa). Then o =
(V3 - b\f)2 (3 + 2b%) — 26v/6, and so VB = (26 —a” +-3)/2b € Q. This
is a contradiction.

(i) (V2+v3)? = 5426 = 2V/3(v2+v/3)—1. Hence the minimum polynemial
of V2 + /3 over Q3] is X% — 2v3X +1.

Certainly Q[v2 4 V3] C Q(v/2,V/5). Conversely, cbserve th s (/24 /5)% =
2\/_+6\/—+1‘\\/_+a\/——17 /2+11+/5. Since both V24w et 1ITV2411V5
are in Q[v2 + v/3], it follows that v2,/5 € Q[v2 + /3] Hv coe D(V2,VB) €
QW3 + V3.
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Since (V2 + vB)* = (7 + 2/10)% = 89 + 28+/10, we see that (v2 + v5)* -
14(vV2 + v5)? +9 = 0, and the minimum polynomial over Q is X4 14X +9.
Since (v2 + v5)? = 7 + 2+/10 = 2v/2(v2 + v/5) + 3, the minimum polynomial
over Q[v2] is X2 —2v/2X —3. Since (V2+V5)* = 7+2ﬁ = 2v/5(v/2++/5)~3,
the minimum polynomial over Q[v/5] is X? — 2\/5X + 3.

*. The element 14 v/3 € Q[v/3]\ @, and so it has minimum polynomial of degree

2. Since (1 + v/3)? = 4+ 2v/3 = 2(1 + v/3) + 2, it follows that the minimum
polynomial is X 2_9X -2

The element +/3/+/5 lies in Q(v/3,v/5) \ Q and so has minimum polynomials of
degree 2 or 4. Since (v/3/+/5)? = 3/5, the minimum polynomial is X — (3/5).
Since (v3++v5)? = 8+2v1 5 and (\/"+f)4 = 1244-32/15 = 16(8+2/15) ~4,

the minimum polynomial is X* — 16X2 + 4.
The element (1+1)v/3 lies in Q(3,v/3) and is in not in Q[v/3}, Q[i] or Q[i+/3). So

its minimum polynomial is of degree 4. Since [(1+4)v/3]* = 64 and [(1+4)v/3]* =
—36, the minimum polynomial is X* + 36.

1. Let @ = v/ 14 +/2. Then o? = 1 + v/2 and so the minimum polynomial over
Qv2]is X* - (1 + V2). Since (a® — 1)? = 2, the minimum polynomial over Q
is X4 —2X?% — 1.

2. (1 +v2Z+ V3 +V6)(a+bv2+cv/3+dV6) = 1 if and only if

a+2b+3c+6d=1

a+b+3c+3d=0

a+c+2b+2d=0
a+b+c+d=0.

Solving these equations gives{a = d = 1/2,{b = ¢ = —1/2} So the inverse is

1/2) 1 = V2 - V3+V6). mm——o=

3. The two statements are in fact the same. If g factorises non-trivially over K,
so that ¢ = ww, with 0 < du < 9p and 0 < Jv < Op, then the factors u and
v are certainly in L[z], and so g factorises also over L. Consequently, if g does
not factorise over L, it does not factorise over K.

l4. We have seen that the field A of algebraic numbers is countable. Hence certainly

RN A, the field of real algebraic numbers, is countable. Since R is uncountable,
there are 2%° real transcendental numbers.

15. (i) This is true, since both Q(a) and Q(8) are isomorphic to the field Q(X) of
rational forms over Q.

(ii) This is false. Let  be transcendental. If 1/ were algebraic, with minimum
polynomial X™ 4 a,—1 X' 4+ - + a1 X + ao, then (1/a™)(1 + an_1ax +

-4+ a10™ ! 4 gpa™) = 0, and it would follow that « is algebraic. Thus

1/« is transcendental. Taking S as 1/c, we see that the product of two
transcendental numbers need not be transcendental.

(iii) This is false. Let o = e and 8 = im. Then o = —1.

(iv) This is true. If o were algebraic, there would exist ag,ai,...,an (not all
zero) such that ao + a10® + --- + a,o®™ = 0, and this would immediately
imply that « is algebraic.
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3.16. (i) Expanding the determinant A, by the first row, and using the induction
hypothesis, we see that
-1 A 0 -0
. 0 -1 X P
Ap =AAn i + (-1)" Yy, 0 : . T :
0 1§ S oA
0 0 i
= )‘(Qn—l F @n2A+ -+ ql)\n—z S e
=gn +(In—1)\+~"+Q1)\n_1 + A",
(ii) The matrix of T, is
r o 0 0 0 —ag
1 0 0 0 —a
01 0 o0 —az |
A=10 0 1 0 —az .-
: i
LO 0 0 1 —an-y |
and
X 0 0 0 an
-1 X 0 0 a1 |
0 -1 X o0 12 i
|XIn~Al=]| 0 0o -1 X as |
: : : . : I
0 0 0 ... =1 X ia,. |
By part (i), this is equal to m(X).
3.17. Since 8 = a? does not belong to K, its minimum polynomial has degree at

least 2. Then, since 8> — 168 +4 = 0 in K, the minim:ne solynomial of @ is

X? - 16X +4.

Again, the minimum polynomials of a® — 14« and o2 = Eg*;w e ;;,t;east 2. Note

next that A\
L o

(o — 140)* = o® — 280" 4 196a”

’ =a’(a* — 160° +4) — 12(a* — 160 | 4, £ 48 - 48,
e =log 4 2o

and so the minimum polynomial of o® — 14¢ is X2 -ug
)

(o —18a)* = o — 360" + 32407
=o*(a" - 160° +4) — 20(a* — 16a* ru)pdo =Rie

and so the minimum polynomial of a® — 18 is X2 — 80.

CIfg=X"4 X +1 were reducible, it would have a linet =+ .nd hence a
root , either 0 or 1. Since neither 0 nor 1 is a root, g musi i+ srreducible.
The elements of K are 0, 1. o, 1 + @, o®, 1+ &%, o o?. Then
B =l+a,a*=ata? a®= l+a+a? o8 =1+a’ ~iso K\ {0}
is a cyclic group of order 7, generated by a. (It is inde: - e osie: by any of

its elements except 1.)
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Chapter 4

4.1.

4.3.

Let ABCD be a parallelogram.

Draw a circle with centre A passing through B, meeting the line AB again in
P. Draw the perpendicular bisector of BP, meeting CD in Q. Similarly, draw
the circle with centre B passing through A, meeting the line:AB.in ‘R, and then
draw the perpendicular bisector of AR, meeting CD in S. The rectangle ABSQ
has the same area as the parallelogram ABCD. Then construct a square equal
in area to the rectangle ABSQ.

Q. D S C

\
\ \
" -
, R
Let P, Q, Rbe non-collinear pf;i
N
"

P M @
Draw a circle with centre P passing through @, meeting PR in a point X (not

shown). Then draw the perpendicular bisectors of PQ and PX. These meet in
I, and PI is the required bisector.

Suppose that the angle is ZIOA, where O is (0,0), I is (0,1) and A is (a,b) Let
Ko = Q(a,b). The circle with centre O passing though I meets OA in the point
C(a/Va® ¥ b2,b/V/aZ + b?). So we must extend Ko to K) = Ko(vVa? + b?).

The construction of the perpendicular bisector of OI involves the intersection
of the circles z% + y*> = 1 and z? + y? = 2z. The points of intersection are
(1/2,4v3/2), and so we must extend K to Kz = K1 (V3).

Similarly, the construction of the perpendicular bisector of OC involves the inter-

2 2
section of the circles z24+y* = 1 and (z—(a/\/ a? + bz)) + (y—(b/\/ a? + bz)) =
1. Subtracting the two equations and getting rid of fractions gives the equation

2az + 2by = va® + b2 of the perpendicular bisector (the line joining the two

points of intersection of the circles). After a bit of algebra, one finds that the two
points of intersection are - 7

atb/3 bFaV3
Vaa+ 2 Jarre)’
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The coordinates lie inside the field K». No further extensions are required when

we find the coordinates (1 /2,[VaZ +b% — a]/ (2b)) of the two perpendicular bi-
/
sectors.

4.4. The intersection in the first quadrant of the circle with centre ¢ passing through
I and the circle with centre T passing through O is the point P(1 12, \/g.’sT /2), and
the angle ZIOP is m/3. We can bisect this angle to obtain /6.
As for 7 /4, from Example 4.4 we know how to construct the square QT AB, where
A=(1,1) and B = (0,1). The angle IOA is w/4.

Chapter 5

5.1. First, X* —5X> +6 = (X? — 2)(X? — 3), and the splitting field over Q is
Q(v/2,V3). The degree of the extension is 4, and {1,v2,/3, V6] ic a basis.
Next, X* — 1 factorises over (Cgmm(X —1)(X +4)(X -} The splitting
field is Q(i), of degree 2 over Q. '

Finally, X* + 1 factorises over C into (X — ) (X — eTTY(X - /(X —
¢~3"/4)_In standard form the roots are (1+1)/V2, (A—=2)/VZ. (=11 N2, (—1-
1)/+/2. The splitting field is Q(¢, v'2), of degree 4 over Q, with basi {£.4,v2, 1/ 2}

5.2. First, X® — 1 factorises over C into
I

(X = )X +1)(X = ™/3)(X — e TY(X — (X e wrfdy
Ir: standard form the non-real roots are
(1+iV3)/2, A —iV3)/2, (-1 —iV/3)/2, (-1 +1V3)/2.

The splitting field is Q(iV3), of degree 2 over Q.
Next, X + 1 factorises over C into

(= + (X - eiw/G)(X _ e*i"/s)(X - esi«/s)(x o Sel6y
In standard form the roots are

i i (B2, (VB-)/2, (—V3+D)/2, ( 73

3

The splitting field is Q(Z, V/3),.of degree 4 over Q.
Finally, X® -- 27 = X® — (+/3)°, which factorises over C into
e

(X — VX + VI — VB (X = V3T
x (X — V3eF ) (X — Ve~ 3y

In standard form the rion-real roots are
(V34 3i)/2, (V3 - 31)/2, (—+/3 = 3i)/2, (—sqrt3 — 3i}/2.

The splitting field is Q(, V35), of degree 4 over Q.
— g

\4
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5.3. Denote Y3 by a. Over C, the polynomial factorises into
(X 0™ M) (X - e (X — ae3i”/4)(X — e ¥y,

and, in standard form, the roots are
r = ol +1)/V2, 2= ol = D)/V2, rs = (1 iy VE e a(-1=D)/V2

The splitting field is generated over Q by these roots. 1t is clear that r1 = %(a\/—i—k
iav2) € QG, a/2); similarly, 72.73,74 e Q, av/2). Thus Q(rl,m,rg,u) C
Q(i, aV2). Conversely, 11 +72 = av/?2, and (11— r2)/(r1+72) = iv2/aV2 =1,
and so Q(i, av2) C Q(r1,72,73, r4). The minimum polynomial of av2is X*—12,
and so [Q(av2) : Q] =4 1t follows that [Q(i,aﬁ) - Q| =8.

5.4. Since f(0) and f (1) are both non-zero, f has no linear factor. Hence f is irre-

ducible. The field K = Z2[X] /(f) is generated over 72 by a = X + (f), and has
eight elements

O,I,a,l+a,a2,1+a2,a+a2,1+a+a2A

The multiplication table of the non-zero elements is

1+« 2 2 wta? 1+ota?

14
o+ o o2

o a? 1+a? 1 14 a+a? 1+a « o+ a?
14+ a2 1+a2 1tatal « 1+a o+ a? a? 1

o+ o aoda? 1 1+a+0a? « o 1+a 14 a2
Ltoe+a? | 1+a+o? 14a a? o+ a? 1 1402 o

By trial and error, comparing ¢® with 1+ ¢? for each of the seven elements, we
find the three roots of f in K. Thus f splits completely in K X1

f=(X+a)(X+a2)(X+l+a+a2)4

Chapter 6

6.1. It is easy to verify the identity for small values of m +n. Suppose that D(fg) =
“(Df)g+ f(Pg) for all polynomials such that 8f + 0g < k. Let f=a+aX+
Y amX™, wherem > 1, let g=bo+ 0L X+~ .bpX™, and let m+n = k. Write
f = fi+fo, where fo = amX™. Then D(fg) = D(frg+ f29) = D(f19)+ D(f29)
Now D(f1g9) = (Df1)g + f1(Dg) by the ‘nduction hypothesis. Also,
D(f29) = D(amboX™ + anb X 4 amba X7
= am(mboX™ !+ (m+ D X™ + (m+ Db X"+ +
4o (mt n)an"”"'l)
= man X" o+ b1 X+ F b, X™) +
bamX™ (b + 22X+ F nba X"
= (Df2)g + f2(D9) -
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1. (i) From (R3), 0 = 0+ 0. Hence, from (R6), a0 = a(0 + 0) = a0 + a0, and so,

from (R4), (R1) and (R3), 0 = a0 + (— (ao)) = (a0 + a0) + (— (ao)) =
a0+ [a0 + (- (a0))] = a0 +0=a0. ~ i
() From (R6), (R4) and (i), ab+a(~b) = a(b+ (b)) = 60 = 0. Hence, from H

(R3), (R1) and (R2), —ab = —ab+0 = —ab+ (ab+a(—b)) = (—ab+ab) +
a(—b) = 0+ a(—b) = a(—b). The proof of (—a)b = —ab is similar. 3

First, for all a in R, we have —(—a) = q; for from (R3), (R4), (R1) and
(R2),a=a+0=a+ [Aa+ (A(~a))] = (a+(—a)) + (*(—a)) =
0+ (— (7a)) = —(—a). Substitute —a for a in the identity a(—b) = —ab
to obtain (—a)(—b) = —((~a)b) = —( - (ab)) = ab.

2. 1f1=0 then, forallain R, a=al =a0=0,and so R= {0}.

3. Let K = {0,1}. As far as addition is concerned, the property of 0 makes it clear
that 0+0=0, 1+0=0+1 =1, and the only thing left for 1 41 is 0. We
obtain the cyclic group of order 2, and so axioms (R1), (R2), (R3) and (R4) are
satisfied. The multiplication table must be

0
00
1|0

For Axiom (R5), it is clear that (ab)c = albc) = 1if a = b = c= 1, and otherwise
(ab)e = a(bc) = 0. As for (R7), it is clear that ab="ba=1ifa=>b=1, and

-
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1.4.

1.5.

1.6.

e
-

g/%/‘.ﬁ‘jjé)

1.8.

=\

otherwise ab = ba = 0. Since multiplication is commutative, we need only verify
the first of the distributive laws: if a = 0, then a(b+ ¢) = «i ¢ ac = 0, and if
a =1, then a(b+¢) = ab+ac = b+c. Thus K is a commutative ring with unity,
and is indeed a field, since 171 =1.

Suppose that we have (R9), and let ab = 0 and a # 0. Then ab = a0 ar\d )
b = 0 by cancellation. Conversély, suppcse that we have (R9)', and let ca = cb,

with ¢ # 0. Then c(a+ (—b)) =ca+c(—b) =cb+c(—b) = ¢h + { -¢b) = 0, and
s0 a+(=b) = 0. Hence a = a+0 = a-+ ((—b) + b) - (a+(~z]f‘; bhe0+h=b,

Suppose that D is a finite integral domain, with elements ds,dz, 4., and let
a (= d; for some ) be a non-zero element of D. The cancellation property (R9)
has the consequence that the elements adi, ads, ..., ad, are all siistivei, wnd 5o
constitute a list of all the elements of D. Hence there must be some d; in D
with the property that ad; = 1. Thus D is a field.

(i) a = 1a, and so a ~ a. (ii) If @ ~ b, then a = ub, where u is in the group U of
units. Hence b = v 'a and so b ~ a. (iii) If a ~ b and b ~ ¢, then a - ua and
b = vc for some u, v in U. Hence a = (uv)ec, with uwv € U, and so a ~ .

Suppose that ngiL/i has an inverse z + yiv/2. Thén
la +biV2)? |z + yiv2]* =

That isy (a? 4 2b%)(z? + 2y?) = 1. Since both the factors are positive integers,
we must have that o +2b% = 1; and since a and b are integers, this cau happen

only If a==x1and b=0. e \c
ug %

Since a = la the property (i) is clear. If b = za and ¢ = yb, with =, ¥ in
D, then ¢ = (yz)a. Thus (ii) is proved - and so far we have used only the
properties of a commutative ring. For (iii), suppose that b := ra and a = yb
Then 16 = b = (zy)b, and so, by cancellation, zy = 1. Hence = and ¥ are units,
and so a ~ b.

Ifata=a,thena=a+0=a+ (a+(—a)) =(ata)+{-~a} =ai{—~a)=0

. Suppose that U satisfies (1.1). Then0=a—-a € U and so —a =0 —~a € U for

allain U.If a,b € U, then a — (—b) = a+b € U. Conversely, 1fU<at1sﬁes(l 2)
and a,b€e U, then—bﬁUandsoa+( -b)=a—-beU.

. Let U be a subring, as defined in the text. Then U contains at iesst one element

a,and so a —a = 0 € U. Since 0,a € U we deduce that }-a= -4 & W’ \e
a,b€ U, thena,~be U,and soa+b=a—(=b) € U Thug V¢ c\osed Wirth
respect to the binary relations 4 of addition and multiplicel ben bhe 1
(R1), (R2), (R5) and (R6) are automatic, and we have already shown that (R3)
and (R4) hold. Hence U is a ring.

Conversely, suppose that U is a subset of the ring R, and is n‘self a ring with
respect to the addition and mulmphcatlon in R. Thus 1fa b m
U. Also U contains a zero element Oy, which certainly has ' capenty chat
Oy + Oy = Ou. Hence, by Exercise 1.9, Oy = 0. Within U, ew Wit o g3
a negative u’. It also has a negative —u within R, and v +2/ o {~w}

| e A v
Hma—k U= ((~uw)+ut+u = {—u)+ (u+u) = - u A\ o) 2-utienee,
; \ j \

if a,b € U, it follows that a —b & U.

4
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12. Let E be a subfield of K, definéd in the text. Then K is certainly a ring
with respect to the operations/in K, by the previous exerci i ;
at least one non-zero elemént/a, it follows tha@= aa”" € E. Consequently for

(\%MO ain E, a} & g_l € E. Hence,mnd every b= 0 in

<2 E)we have ab = a7t € K. If b =0 then, trivially, ab = 0 € E. Thus E
J- i closed under the addition and multiplication in E. Axioms{R1),

7. (R4), (R5), (R6) and (R7) arq satisfied, and wehiave already ‘made sure of (RB)7
3} and (R10). Thus E is a ﬁeld.L -

onversely, suppose tha is a non-empty subset of K, and is a field with
respect to the addition and multiplication in K. From the previous exercise, we

Oy*know that E contains 0, that —a € E for every ain F, and that a—b € E for all
P

a, bin E. There s a unity element 1z in E, and from 1glp = Tg we can deduce,
"Dy an argument essentially identical to the one used in the previous exercise, that
1p coincides with the unity element 1 of K. Moreover, if a € E\ {0}, its inverse
a' in E coincides with its inverse ¢! in K, for ’ = (a " a)a’ = e Naa') = a1,
ence, for all a and for all b#£ 0 in E, ab™" € K. Q5 e Ses

13. Suppose first that K is a field. Let I # {0} be an ideal, and let a be a non-zero
element of I. Then, for all bin K, we have b= (ba™')a € I, and so | = K.

Conversely, let K be a commutative ring with unity, having no proper ideals,
JL&H@&?@ K\ {0}. Then (a) = K, and so in particular there exists b in K such

that ba = 1. Hence K is a Tield- _

14. Ifa+biv/3, c+div/3 € Q(iv/3), then (a+biv/3)—(c+div/3) = (a+c) - (b+d)iv/3 €
Q(:v/3), and (a + biv/3)(c + div3) = (ac — 3b) + (bc + ad)iv/3 € Q(iV/3). Also,
if ¢+ div/3 # 0, then |c + div2|* = ¢ + 3d% # 0, and

c —d
+_

2 =1
(ctdV3) ' = 5rm + Fiae

V3 € Q(iV3.

15. (i) K is a subring of the ring of all 2 x 2 matrices over Q, since

(—%b Z>_<—%d (c1>:<ﬁ3a(b_—cd) Zii)’

a b c d\ _ ac — 3bd ad + be
-3b a —3d ¢ )] 7 \ —=3(ad+bc) ac-—3bd | -
Commutativity is easily verified, the multiplicative identity is obtained by
putting a = 1 and b = 0, and

a b 71_ 1 a -b
-3 a) T @i \ 3% a )-

a b . .
( 3 a >!—)a+bl\/§

and

(ii) The map

is an isomorphism.

.16. The set R(iv/3) is a subfield of C, and the argument is identical to that for
Q(iv/3). The set R(v/3 is indeed a subfield of R, since it coincides with R. (Every
real number z can be written as 0 4 yv/3, where y = 2//3.) b

o

W

L./):O-"

o‘b\o%t"c =l\
g E'\\Cc}\

S PR

PN PR SN
o o P

\t




image4.jpeg
196

Fields and Galois Theory

1.17. Since ker ¢ is an ideal of K, it follows from the previous exercise that ker p =

{0}. Hence, for all @, b in K,
p(a)=¢() = a—beckery= {0} = a=1#.

1.18. In an integral domain we have the property that a? =a = g =0orag = 1

1.19.

1.20.

1.21.

1.22.

1r1r = 1r-we deduce that ©(1r)(1r) = p(1r) and so, sinre =  an integral
domain, ¢(1g) = 1s.

Let R=7Z and S be the set of all matrices

(5%).

where a,b € Z. Under matrix addition and multiplication, ./ is » cmmutative
ring, with the 2 x 2 identity matrix as unity element. It is not o

nintegral domain,
since, for example,
a 0 00 /0 o0
0 0 0 b /) Vo 0 /-

Let ¢ : R — S be given by

s@=(55) @en.

for, if a5 0, the cancellation property gives aa = a = gl =» g == 1. From

Then p(1g) # 1s.

a,c e_adtbc e  (ad+be)f + (bd)e

<b+d)+f_ W TFT Ba(f)
—od)tbcitde) a, cftde_a, (o dY
- b(df) b i T8 \d"f)

Suppose that D is a field. Then, if 6 is the mgenomorphism fea! nring in Theorem

1.3, )
a_ab™!  ab7? 1y )
D= i wa

Thus 6 is onto as well as one-one, and so Q(D) ~ D.

Since 6(1x) = O, and since no positive integer smaller thamn € 5.« ihi e petly,
char (Zg) = 6. For all a in Zg, a> = 0 = 6 [a® = 2]a® and 4 jet o= 2
aand3|a = 6|a = a=0.

This property holds for Z, if and only if n is square-free (» © il by the
square of any prime number). The argument used for § work -+ .. produet
P1p2 - . . pr of distinct grimes. Conversely, if n = p*m for some vrime » then. in
Zn, pm # 0 but (pm)? = 0.

e e e

Leaving out 0, we have the table

4

D CT o WD
CTL L = OB M
= OO W W
(S R Y
RO = w oYUt
R W s T O

&

E
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e

17t=1,2"1=4,3"=54"1=25"1=3,6"=6

23, This is certainly true for n = 1, since

e (o ()

Let n > 1, and suppose inductively ‘that the theorem is true for n. To show that
it is true for n 4+ 1 we reqdire the Pascal identity

(Tf1>+(:>=<":l) (n>r>1), (12.1)

whose proof is straightforward. For the induction step, during which we use only
operations that are valid in a commutative ring, we have that

(@+5)"™ = (e +b)(a+b)" = (a+) (Z (n> b>

=0

(a+b)' =

{ n n n—r+lpr—1 n n—ryr <3
=(a+b){a”+-+| " e Tyt I AR SR S

For r=1,2,...,n, the term in o™ ="b" is

b- ( " >a"”r+1br'1 +a- (n) a" b,
r—1 T
and so the coefficient is
1
r—1 T T

The coefficients of a™** and b™*! are both 1, and so we conclude that

n+1
T

=0
Hence, by induction, the result is true for all n > 1.

1.24. As in Theorem 1.17, we have that

P

RS (”) (~1)2” "y ="+ (1P

r=0

If p is odd, the result is immediate. If p = 2 it seems that (z—v)* = 2% +9°, but
@ = —a for every a in a field of characteristic 2, and so the result is still true.

3.25. It is true for n = 1. Suppose that (x £ y)”n_1 =" % y”nml. Then

-1 2 S § n

Gty =[xy P=@E" +y" P= 2y .

A





