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~1. Rings and Figlds )l = (\(;C)c, 3
accc') = bced

A a=%»
W frequently wish to denote a™! by 1/a.

Tt is essy to see that (R10) implies (R9). The converse implication, however,

is not true: the ring Z of integers is an obvious example. It is worth noting also

- . e S~ — »
that (R9) is equivalent to ol JE/J B> ) T ] S D
) o ) sl {
ab=0 = a=00rb=0. N\ aplae -

2 (/"/—_«_,f_,—“J'ﬁ"J T

(R9)" no divisors of zero: for all a, b in R,

(See Exercise 1.4.) t@- \
Tt is useful also at this stage to remind ourselves of the definition of a group. -
A group G = (G,.) is a non-empty set furnished with g binary operation @ 2

usua”y omltted) with the following properties.

(G1) the associative law:

—_—

(ab)c = a(be) (a,b,c € G);

(G2) the existence of an identity element: there exists e in G such that, for all
ain G,

ea =a;

(G3) the existence of inverses: for all a in G there exists ™! in G such that

firex
An abelian® group has the extra property k

Ry Lo a
W= e, ) i ) (’k‘tq—lj

-~

(G4) the commutative law:

ab=ba (a,beC

‘ s A
M,J/‘ -l | N ~ T
Remark 1.1 @ il - 7 abilen _p K"\f)

T —
If (R, +,.) is a ring, then (R, +) is an abelian group. If (K, +,.) is a field and
= K\ {0}, then (K*,.) is an abelian group.

7o abilens Ficla

Let K be a commutative ring with unity, and let . s

U={ueR: (veR)uv=1}.

R N e

t ic easy to verify that U is an abelian group with respect to multiplication in
R. We say that U is the group of units of the ring R. If a. b in R are such

that a = Qj for some u in U, we say that ¢ and b are associates, and write
a ~ b. For example, in the ring Z the group of units is {1, =1}, and a ~ g for
— e
all a in Z. E———

———

? Niels Henrik Abel, 1802-1829. (_/_,/J-&—b O) /Z/'J EJ'; C)‘\ el
(S
‘)/ 2—1_ -»—~§/—\/a,\) @
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Example 1.2\ _csf=e SUTS AL plasy

Show that R = {a +bv2 : a,bc Z) forms a commutative ring with unity with
respect to the addition and multiplication in R. Show that the aroup of units

of R is(infinite. . e
J:: W T “ntu ‘QR‘) v € ? (4\/2\}
Solution o= B

Gt‘“‘f‘&“\

iy -
"3 Qang,,
It is clear that s TSP v (2
(@+0vV2) +(c+dv2) = (a+c)+ (b+dvV2e R
-y oy ..
and . - —La_, A
(a+bv2) (c+ dv2) = (ac+2bd) + (ad + be)V3 € R. i

Since R is a subset of R, the properties (R1), (R2), (R5), (R6) and (R7) are
C\'s}&;—:,oautomatically satisfied. TMWG_% (R3), (R4) and (\R&}
since the zero element is 9 4 0+/2, the negative of @ + bv/2 is (—a) + (—b)v2,
and the unity element is 1+ 0+/2. The element 1 + V2 is in the group ol unity,

since (1+v2){—1++v2) = 1. The powers of this element are all distinct, since

\/\—ﬂéul+\/§>l,andso va" S p “:@-:-cf
o 1+V2<(1+vV22 < (14+v2P3 < ...
ALy € e T Se e .
All these powers are in the group of units, which is therefore infinite.
The group of units is in fact {a + bv2 : a,b € Z| |a? - 20%] = 1} L]

&-’/‘ \\—t\\\et\\‘\a\

o
emark 1.3 = ey R~ vl Uimbeg ) o
n—l/"'d;l-)(,q_/‘mgl . Z

The grou;) of units of a field K is the group K* of all non-zero elements of A"
- I

In a field, every non-zero element divides every other, but in an integral
domain D the notion of divisibility plays 2 very significant role. If ¢ « /7\ 11t

¥

N 3 . 7 . . . T
and b € D, we say that ¢ divides b, or that a is a divisor Of b, or that

a is a_factor of b, if there exists z in D such that gz — b. W wwrit
and occasionally write @ J b)f a does not divide b. We say that o . . coraorr
. lvisor, or a proper factor, of b, or that a properly divides 4 if. 1o anf ﬂ
Vx/ > unit. Equivalently, a i§a proper divisor of b if and only ifa|band bfa. T
’ LU L g, & B2
t/L‘V oo b {""0) a z 8 A s ' &
RCISES g et
EXERCIS ach ) et a=x),
1.1. Many of the standard techniques of classical algebra s copiaes
quences of the axioms of a ring. The exceptions are the. poending
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on cemmutativity of multiplication (R7) and divisibility (R10). Let
R be a ring.

(i) Show that, for all a in-R,

a0 =0a=0.

(i) Show that, for all a, b in R,
a(—b) = (—a)b = —ab, (—a)(—b)=ab.
1.2. What difference does it make if the stipulation that 1 # 0 is omitted
from Axiom (R7)?

1.3. Axiom (R7) ensures that a field has at least two elements. Show that
there exists a field with exactly two elements.

1.4. Prove the equivalence of (R9) and (R9)".
1.5. Show that every finite integral domain is a field.

1.6. Show that ~, as defined in the text, is an equivalence relation.
That is, show that, for all a, b, ¢ in a commutative ring R with unity,

(1) a ~ a (the reflezive property);
(ii) a ~b = b~ a (the symmetric property);
(iii) a~band b~ c = a~ c (the transitive property).

1.7. Let ¢« = 4/—1. Show that, by contrast with Example 1.2, the ring
R={a+biv2 : a,b € Z} has group of units {1, —1}.

1.8. Let D be an integral domain. Show that, for all a, b in D \ {0}:
(1) a|a (the reflexive property);
(ii) a|band b|c = a]|c (the transitive property);

(iii) a|band bla = a~b.

[

1.2 Subrings, Ideals and Homomorphisms

e Jas Gho oL BRS
Much of the matenal in this section can be applied, with occasional modifica-
tn?}}s to ungs in general but we shall suppose, without explicit mention, that
all our rmgq are commutative. We shall use standard algebraic shorthands: in

particular, we write a — b instead of a + (=b). V1N

W
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A subring U of a ring R is a non-empty subset of R with the property ¢
that, for all a, b in R, i g
L ordol s !{

abelU = a—b,abeU. "

-

e’ Equivalently, U(# 0) is a subring if, for all @, b in R,

a,belU = a+b,abclU, a€lU = —acU. (1.2)

" It is easy to see that 0 € U: simply choose a from the non-empty set U, and
deduce from (1.1) that 0 =a—a € U }

L‘D}Jo; A subfield of a field K is a subring which is a field. Equivalently, it i &
subset E of K, contzgn_ing at least two elements, such that

o e @ b L/(:;cn.ch,y'
a,b€EE = a—beE, acE, beE\{0} = ab”' €E. (1.3} ‘
Again, we may replace the second implication of (1.3) by the two implications
i Sgiie: .
@J‘(.ﬁ.ba,beE@abeE, e E\{0} = a '€ E. Y

If E C K we say that F is a proper subfield of K.
An ideal of R is a non-empty subset I of R with the properties
JETTN @ .
/P\p(mu/ ‘Ga,belﬁa—bel, a€landre R = rael. {1.5)

sub ing

An ideal is certainly a subring, but not every subring is an ideal: the subring
7 of the field Q of rational numbers provides an example. Among the ideals of
R are {0} and R. An ideal I such that {0} C I C R is called proper.

- BN, Wi -~ .
\x,q\uigmifca:ﬁ LEe@, 1€ D ra=% 437 Jbg

Theorem 1.4 i : N
2y, Ra B foy < 1 CR
Let A = {a1,a2,...,a,} be a finite subset of a commutative ring /7 Thiw the
set )
Ra, + Ray + -+ + Ra, (= {m1a1 + x3a2 + -~ + Tp0pn  T1,73, - & R

is the smallest ideal of R containing A.

Proof
The set Ra, + Ras + - - + Ruay, is certainly an ideal, since. for ali

T1,T2,- Ty Y1, Y2 -+, Yn

*

A




image7.jpeg
<

" 1. Rings and Fields : 7

in R,
(m;al + x99 + -+ .’L‘nan) = (y1a1 + Y202 + -+ ynan)

= (21 —y1)as + (T2 — y2)az + - + (Tn — Yn)an
€ Ra; + Raz +---+ Ran;
and, for all 7 in R, oo 9’- ol
r(zia) + T2ap + -+ + Tpag) = (rzi)ar + (rz2)ag + -+ (rzq)an
€ Ra; + Ras +---+ Ra, .

It is clear that every ideal I containing {a1,az,. .- ,an } contains the element
2101 + Toag + - - - + Tpay for every choice of T1,%2,...,%n in R, and so Ra; +
Ray +---+ Ra, C I i O

«

«;S'
& We refer to Ra; +Ras+- - -+ Ra, as the\ideal generated byya;,az, .. -, an,

and frequently write it as (aj, as, .. .,a,). Of special interest is the case where

the ideal is generated by a single element a in R; we say that Ra = (a) is a e

eVven

%Zgrincipal ideal./ Ad 2 oA vie 2: oy T & 17

There is a close connection between ideals and divisibility:

oo e\ Q’; Nz oA
eVt 1 7R 43>
Theorem 1.5 T e o P E AR LN
Let D be an integral domain with group of units U, and let a,b € D\ {0}.
Then: ’ —_g 5
=) R 2.3
(i) {(a) C (b) if and only if b| q; K e 5
"'6/ ~v_ -1, 7 n
(ii) {(a) = (b if and only if @ ~ b; (/;UWS ¢ s ST e Gie g
e/ AP o= — veer® o fns ’,_\‘_/ —6/515,
(iii) (a) = D if and only ifa € U. VAT a2
-3 y
Az => A=Y g 2
Proof "

(i) Suppose first that b | a. Then a = zb for some z in I, and so

(a) = Da = Dzb C Db = (b).

suppose that {a) C (b). Then there exists z in D such that
a=zbandsob|a. —

(it) Suppose first that a ~ b. Then there exists u in U such that a = ub and

=u"la. Thus b| a and a | b and so, by (i), {a) = (b)x___/

Conversely, suppose that (a) = (b). Then there exist u, v in D such that

a = ub, b = va. Hence (uwv)a = u(va) = ub = a = la, and so, by cancellation,
uv = 1. Thus v and v are units, and so a ~ b.

—_—

—_

i\




image8.jpeg
Fields and Galois Theory

alstite
(iif) It is clear that (1) = D. Hence, by (11) (a) = D if and only if a ~ 1, that
is, if and only if a is a unit. O

M_)X;O—? ¢ )\ >
X A homomorphlsm from a ring R 1nto a ring S is a mapping ¢ : R — S
with the properties .

: @
© ola+b) =@ +b), To(ab) = pla)p(). (1.6)
Among the homomorphisms from R into § is the zero mapping ¢ given
by —_— ————
((a)=0(a€R). (1.7

While some of the theorems we establish will apply to all homomorphisms,
including ¢, others will apply only to non-zero homomorphisms.

Some elementary properties of ring homomorphisms are gathered together
in the following theorem:

Let R, S be rings, with zero elements Og, Og, respectively, and let ¢ : R — S
be a homomorphism. Then,

(i) »(0r) = Os;
(ii} @(—r) = —p(r) for all 7 in R;
(ii1) @(R) is a subring of S.
AR Bl

vla) + ©(0r) = pla+0r) = p(a),

we can deduce that
©(0r) = 0s + ¢(0r) = —(a) + @(a) + p(0r) = —p(a) + (s i+ 05 {1.8)
(ii) Since, for all r in R,

p(r) + @(—1) = p{r + (—1)) = p(0r) = 05 = ¢(r) + (= p(r)),

it follows that

(iif) Let (a), p(b) e arbitrary elements of o(R), with a,b & /1. Then

p(a)p(b) = p(ab) € p(R)

USR5

W
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and, by virtue of (1.9),

©(a) — p(b) = p(a) + p(=b) = p(a+ (-b)) € v(R).

Thus ¢(R) is a subring. 0

The following corollary is an immediate consequence of the above proof:

Corollary 1.7
LOTOLAY Sef,

If ¢ : R — S is aring homomorphism and a,b € R, then p(a—b) = p(a)—p(b).

Let ¢ : R — S be a homomorphism. If cp we call it a

monomorphism, or an embedding, and if ¢ is also fntojwe call it an iso-
morphism. We say that the rings R and S are isomorphic (to each other) and
write R ~ S. For example, the ring R = {m + nv2 : m,n € Z} is isomorphic
to the ringc\/g&
iR = M

S {(m n):m,nEZ}

- 2n m

(1.10)

with the operations of matrix addition and multiplication, the isomorphism
being

m
i 2 3
© m+an<2n m)

We shall eventually be interested in the case where the rings R and S
coincide: an isomorphism from R onto itself is called an automorphism.

If o : R — S is a monomorphism, then the subring ¢(R) of S is isomorphic
to R. Since the rings R and @(R) are abstractly identical, we often wish to
identify ¢(R) with R and regard R itself as a subring of S. For example, if S
is the ring defined by (1.10), there is a monomorphism w given by

0 12— R ,.A»‘-v;\(*
9(m):<73 m) (meZ), ﬁe{z

and the identification of the integer m with the 2 x 2 scalar matrix £(m) allows

us to consider Z as effectively a subring of S. We say that R contains Z up to
isomorphism. ‘"%\ ’

Let ¢ : R — S be a homomorphism, where R and S are rings, with zero
elements Og, Og, respectively, and let

K=¢10s) (={a€ R : pla) =0s}). (1.11)

P
We refer to K as the kernel of the homomorphism ¢, and write it as ker ¢.

S

X
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If a,b € K, then ¢(a) = ¢(b) = 0 and so certainly pla — h) = ©; hence
TRy %
a—be K.Ifr € Rand a € K, then p(ra) = e(r)p(a) = @i 5 = v, {See
Exercise 1.1.) Hence ra € K. We deduce that the kernel of & hemomorphism
18 an ideal.

Fields and Galois Theory

i

In fact the last remark records ‘only oné of the ways in which the notions
of homomorphism and ideal are linked. Let I be an ideal 5 a ring R, and
let a € R. Theset a+1 = {a+z : x €I} is called the residue class of

modulo I. We now show that, for all a, b in R, -
a+I=b+1 < a-bel, (1.12)
e —
and o\,
(a+D)+OG+D)=(a+b)+1, (a+I)b+I)Cab+1. (1.13) ——
%To prove the first of these statements, suppose that a + I = b+ J. Then, in
particular, a = a+0€a+ 1 = b+ I, and so there exists © in / suel that

a=b+z. Thusa—b=zecl. Conversely, suppose that a —b € I. Then, for all
z in I, we have that a+z = b+y, where y = (a=b)+z el Thusa+! Cbil,
and the reverse inclusion is proved in the same way.

4 To prove the first statement in (1.13), let z, y € I and let

uv=(a+z)+(b+y)€(a+I)+(b+1).
Thenu = (a+b)+(z+y) € (a+b)+1m1f3 €landv = {a+bj+z e
(@+b)+ 1, thenv=(at2)+(+0) € (@t )+ (b +1).
The second statement follows in a similar way. Let T,y € [ and let u -
(a+2)(b+y) € (a+I)(b+1I). Then u = ab + (ay +zb+zy) € ab + 1.
The set R/I of all residue classes modulo I forms a ring with respect to the

operations 3\ 5
ﬁ @+ D+0+D=@+8)+1{ ((a+ DHb+1)=ab+1, (1.14) ——

called the residue class ring modulo I. The verifications are romigw
mnt is 0+1 = I; the negative of a+1I is —a+I. The mapping &; : fi-» /i
A

given by -
0r(@)=a+71 (a€R), (115,
is a homomorphism onto R/I, with kernel I. It is calied the nabural homo-
—=< —_— e
morphism from R onto R/1. o
s h e L OHLD S

The motivating example of a residue class ring is the ring 7, of integers
mod n. Here the ideal is (n) = nZ, the set of integers divisible by n. and the

elements of Z,, are the classes a + (n), with a € Z. There are exnith 1 ¢ lnsses,
namely
(n), 14 (n), 2+ (n), ..., (n = 1)+ (n).
A strong connection with number theory is revealed by the foileaing theo-
rem:

= e
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Theorem 1.8 2.: £ eyiematpny | Fasl

Let n be a positive integer. The residue class ring Z, = Z/({n) is a field if and

only if n is rime. ; 2
only iR SIS 2. = ?/(g)

Lo wavS  ASE S e TS85s9g
P T ~-\e,.§, ¢, S, 1o
Suppose first that 7 is not prime. Then n = rs, wherel <r<nandl <s<n. \
Thenr+(n)7é/0+(n) and s + (n) # 0+ (n), but
3 <

LcREN s+ () =t (n) =0+ ()

Proof

ng‘t_t = 0 =X Y
N 1 < /

Thus Z, contains divisors of 0, and so is certainly not a field.
& Now let p be a prime, and suppose that (r + (p))(s + (p)) = 0+ (p). Then
151 plrs, and so (since p is prime) either p | 7 or p | s. That is, either 7 + (p) =0

j}') or s+ (p) = 0. Thus Z, has no divisors 5{) zero, and m@nv B it ke
3 B B
By Exercise 1.5, Zj, is a field. i:t. 3
— =1 v

The next theorem, which has counterparts in many branches of algebra,
tells us that every homomorphic image of a ring R is isomorphic to a suitably

chosen residue class ring: T % Y r,(; W3
-, . ’g—\’;zS:a Vi <N = o
‘20 = o \aSla_ d
Theorem 1.9 2 — 5
oz

Let R be a commutative ring, and let ¢ be a homomorphism from R onto &

commutative ring S, with kernel K. Then there is an isomorphism o : R/K —
Pl dsiaisal

S such that the diagram

\wn @ra\fq\w{mqm e E
= Liete

©
R S
y_JQ/e—:-G \\'\1&1\*\ CJA)
9K (a4 =
?c“’vd JEIY Mgkt
LRV

R/K NS e
commutes.
Proof

Kl@/ﬁ‘_\bf

Define « by the rule that
ala+ K)=¢(0) (e+K e R/K).

The mapping is both well-defined and injective, for

a+K=b+K <> a-be K < pla—b)=0 < pa) =¢(b).
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It clearly maps onto S, since ¢ is onto. It is a homomorphism, since

a(@+K)+ (b+K)) = a((a+b) + K) =p(a+b)
=p{a) + o) =ala+K) +alb + K),

e RS
and '

a((a+ K)(b+ K)) = a(ab+ K) = p(ab) = p(a)p(b) = ala+ K)a(b+ K).

Hence « is an isomorphism. The commuting of the diagram is clear, since, for

all ¢ in R,
o(0x(0)) = a(a + K) = o(a),
and so a0k = . I £
EXERCISES
N7

- - 1.9. Let a be an element of a ring K. Show that a + a = a implies a = 0.

-

¢~ 1.10. Show that the definitions (1.1) and (1.2) of a subring are equivalent.

~"1.11. Show that the definition (1.1) is equivalent to the definition of a
subring U of a ring R as a subset of R which is a ring with respect
—SZ e
to the operations + and . of R.

/" 1.12. Show that (1.3) is equivalent to the definition of a subfield as a
subring which is a field.

1.13. Show that a commutative ring with unity having no proper ideals is
a field.
/ 1.14. Show that Q(ivV3) ={a+biv3 :abc Q} is a subfield of C.
/" 1.15. (i) Show that the set :

5 # ; a b )
AN et d h= {< -3b a ) ' a‘bEQ}
suv

is a field with respect to matrix addition and multiplication.

(ii) Show that K is isomorphic to the field Q(iv/3) defined in the
previous exercise.
V’YQ; / 1.16. Show that the set R{(i\/3) = {a+biv/3:abc R} is a subfield of C.
Is it true that R(\/iﬁ) ={a+ 3 :abe R} is a sublicld of R?

1.17. Let ¢ : K — £ he a non-zero homomorphism, where & and L are
fields. Show that ¢ is » monomorphism.
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1.18. Let ¢ : R — S be a non-zero homomorphism, where R, S are com-
mutative rings with unity, with unity elements 1g, 1g, respectively.
If R and S are integral domains, show that ¢(1g) = 1s. Show by an
example that this need not hold if the integral domain condition is
dropped.

preicy
1.3 The Field of Fractions of an Integral Domain

From Exercise 1.5 we know{ that every finite integral domain is a field{In this

section we show how tG-construct a field out of an arbitrary integral domain.
Let D be an integral domain. Let

P=Dx(D\{0}) ={(a,b) : a,be D, b#0}. RERPRPY
Define a relation = on the set P by the rule that (a P = % Pz
)= 2
(M if and only if ab’ =a b 2
e e
AL a0
Lemma 1.10 PSR

The relation = is an equivalence.

Proof
We must prove (see [13]) that, for all (a,b), (a/,¥), (a”,¥") in P,
(i) (a,b) = (a,b) (the reflexive law);

(i) (a,b) =(a’,¥) = (a’,¥') = (a,b) (the symmetric law);
(iii) (a,b) = (a/,¥') and (a’,¥") = (a”,b") = (a,b) = (a”,b”) (the transitive

law). -
N2 P 8 pln s
The properties (i) and (ii) are immediate from the definition. As for (iii), from
(a,b) = (a',V') and (a’,') = (a”,b"”) we have that ab’ = a’b and o't = o"b'.
Hence

/b'/(ab”) = (ab')b” = a’bb” = b(a'b") = ba"'b' =K (a"'b).
Since b # 0, we can use the cancellation axiom to obtain ab” = a”b, and so
(a,d) = (a”,0"). ]
o }}
The quotient set P/ = is denoted by Q(D). Its elements are equivalence
classes [a,b] = {(z,y) € P : (z,y) = (a,b)}, and. {or reasons that will become

X 0 = o
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s
obvious, we choose to denote the classes by fraction symbols a/h Two classes
" ORGIASSE
are equal if their (arbitrarily chosen) representative pairs in r wr §° are
equivalent: N :
4 [ )\’,:‘>
=D NS /2?

In particular, note that

forall k #0in D. S8 G o Vs <
We define addition and multiplication in Q(D) by the rules

¢ _ad+be a ¢ _ac
d- bd T b d b S

+

o Q

e Aol 4 L
kemma 1.11 &

The addition and multiplication defined by (1.16) are well-defined.
Lty o 92 o o

Proof

Suppose that a/b = a’/b’ and ¢/d = ¢/ /d’. Then ab’ = a'band cd’ - ¢+t. sud so

e Lo ).
S (ad + b)YV d = ab'dd’ + bbcd’ = a'bdd’ +bb'd/d = (a'd +b'c

Hence

a+c_ad+bc_a’d’+b’c' 71{4_1’
b d  bd v'd Ty
Similarly,
(ac)(t'd) = (ab')(cd) = (a'b)(c'd) = (a'c’)
and so
a ¢_d ¢
b d V¥ &

These operations turn Q(D) into a commutative ring with unity. §iu veriiica-
tions are tedious but not difficult. For example,

arc e a cf+de acf+ ade
E<E+?>:§ aq bdf
@ ¢ a e ac ae rwhf +aebd  acf + auc
T a's e i pdf  bdi

The zero element is 0/1 (= 0/b for all b # 0 in D). The units cats /1
(=0b/b for all b# 0 in D). The negative of a/b is (—a)/b.
—_—————

=g
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The ring @(D) is in fact a field, since for all a/b with a # 0 we have that

B b &
b a ab 1’
We refer to the field Q(D) as the field of fractions of the domain D. & (=) %Q
: Cretet
Lemma 1.12 v Pretel C\/:} ) A s
The mapping ¢ : D —(Q(D) given by -
pla)=2\(a € D) (1.17)
"f___},/‘ P
is a monomorphism. S / -
[ e
~ \_\

Proof

W oM JP_I,L

AWSEN -

a b a+b a b ab
wla) +p(b) = 1 + 1= 1 ola+b), @la)pd)= R plab). —>Weme-
Also,
a
] =pb) = —=- = a=b.
\ = pla) =) = 5 a T R el O

0O
f}:-%_ ?\c\"‘j—p‘ adwoy)

~1If we identify a/1 with @, we can regard Q(D) as containing ].z_gg_q’su,b_rjng.
The field Q(D) is the smallest field containing D, in the following sense:

2 subVine -s]? (>

Let D be an integral domain, let ¢ be the monomorphism from D into Q(D)
given by (1.17) and let K be a field with the property that there is a monomor-
phism M_into K. Then there exists a monomorphism ¥ : Q(D) — K

) o
Theorem 1.13 ¥ 7 ,4v®

such that the diagram 5 ==
D K
@ b i
. as—"
: QD) K\l
commutes.

W
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T
\/:}/:/569}@/\;)_,&5 ol < uo )

Define a mapping 4/ : Q(D) — K by the rule that

‘a O(a)
;@; Scorze 7’[’(b)' Ok

(Note that §(h) # 0, since 0 is a monomorphism.) This is well-defined snd
one-to-one, since

§=5 e ad=be > 6(a)0(d) = 6()(c) < "oy

and it is a homomorphism, since

a ¢ ad + be 9(ad+ be) _ 6(a)8(d) + 6(b)8(c)
v(Grg)=v (o) = 0d) 00)e@)
0(a) | 6(c) a c
~ ) e w(z) ”’(E) ’
and similarly
_ (e ¢\ ra ¢
(53 G
The commuting of the diagram is clear, since, for all @ in D,
. (a O(a)
) =o(5) - 3 -
/
LS va‘fy&) O

More informally, Theorem 1.3 tells us that any field containing [J contains
(up to isomorphism) the field Q(D).
When D = Z, it is clear that Q(D) = Q. This is the classical example of

the field of quotients, but we shall soon see that it is not the only one. e~ / )
4_ X«
e =
P
Y s 1\
EXERCISES : Cae, Cw S
w:ug o % peet & 3

1.19. Verify the associativity of addition in QD). *~.

1.20. What happens to the construction of Q(D) if D is a field”

Votes & wmat ‘f-‘\ A\ as

-\ -\
B ak > O\L
A A —
o o= — T
~ T o ¢

A
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1.4 The Characteristic of a Field o P 2 av i
, L N

In a ring R containing an element a it is reasonable to denote a + a by 2a, 2. - & o 1560
and, more generally, if n is a natural number we may write na for the sum 4 =

a+a+ - +a (nsummands). If we define 0a = Og and (=n)a to be n(—a), Lya %

we can give a meaning to na for évery intéger n. The following properties are ..

easy to establish: for m,n € Z and a,b € R, 2’1 = A
Ay 2 W

(m+n)a=ma+na, mla+bd)=ma+mb, (mn)a=m(na),

m(ab) = (ma)b = a(mb), (ma)(nb) = (mn)(ab). (1.18)
Consider a commutative ring R with unity element 15. Then there are two
~onsider 2
possibilities: either
(1) the elements m1gr (m =1,2,3,...) are all distinct; or

(ii) there exist m, n in N such that m1g = (m +n) 1g.

in the former case we say that R has characteristic zero, and writ@
In the latter case we notice that m1lgr = (m+n)lg = mlg + nlg,and so
n1gr = Og. The least positive n for which this holds is called the characteristic
m R. Note that, if R is a ring of characteristic n, then na = 0g for all

ain R, for na = (n1g)a = 0a = 0. We write char R = n.
If R is a field, we can say more: '

Theorem 1.14
The characteristic of a field is either 0 or a prime number p.
il it
Proof wal e s
WS e L Ak PN
The former possibility can certainly occur: Q, R and C are all fields of charac- M e,

teristic 0. Let K be a field and suppose that char K = n 3 0, where n is not
prime. Then n = rs, where 1 < r < n, 1 < s < n, and the minimal property of
n implies that r 1 # Ok, s 1x # Ox. On the other hand, from 1.18 we deduce

that N SN T

(TIK)(SIK) = (TS) 1y =nlg =0k y &)
\
and this is impossible, since K, being a field, has no zero divisors. O

—
Let K be a field with characteristic 0. Then the elements nlg (n € Z) are
all distinct, and form a subring of K isomorphic to Z. Indeed, the set

P(K) = {ml;\'/nlk: m,n € Z, n # 0} W
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is a subfield of K isomorphic to Q. Any subfield of K must contain i and 0 and
so must contain P(K), which is called the prime subfield of K.

If K has prime characteristi¢p,)the prime subfield is
oS &

P(K) = {1x,2 (1K), 1, (.~ 1) (1)} (1:20)

and this is isomorphic to Z,.

The fields Q and Z, play a central role in the theory of fields. They have
no proper subfields, and every field contains as a subfield an isomcrphi copy
of one or other of them. We frequently want to express this my saying thnt
every field of characteristic 0 is an extension of @, and every field of prime
characteristic p is an extension of Z,.

We record these observations formally in a theorem:

Theorem 1.15

Let K be a field. Then K contains a prime subfield P(K) contained in every
subfield. If char K = 0 then P(K), described by (1.19), is isomorphic to (;. If

char K = p, a prime number, then P(K), described by (1.20), is isomiorphic to
Zy,.

Remark 1.16

Given an element a of a field K, we sometimes like to denote a/(n 1) siniply by

a/n. If char K = 0 this is no problem, but if char K = =pt then we canuot ast

a meaning to a/n if n is a multiple of p. Thus, for example, the formula

ry=;((@+9)? - 6 —v))

is not valid in a field of characteristic 2, since the quantity on the right reduces
to 0/0 and %o is undefined. '

i o

In fields with finite characteristic we orlcountu 50IMe SUrprisitic foii

Theorem 1.17 - =
- R 2 w2

Let K be a field of characteristic p. Then, for all z, y in K,

o

(@ +yP =o" +y.

5 (A e / w—;&i

L
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Proof

By the binomial theorem, valid in any commutative ring with unity (see Exer-
cise 1.23), we have that

(@ +y)° :*i (f) Ty & (1.21)

r=0

For r=1,...,p— 1, the binomial coeflicient
P\ _pp=1...(p-r+1)
7 r!

is an integer, and so ! divides p(p—1) ... (p—7+1). Since p is prime and r < p,
1o factor of 7! can be divisible by p. Hence ! divides (p—1) ... (p—r+1), and

SO <p> is an integer divisible by p. Hence, forr=1,...,p— 1;

r
(p> In*ryr =0 ,
T

and so, in (1.21), only the first and last terms survive. 0

Remark 1.18

The fields Z, = Z/{p) are important building blocks in field theory. We usually
find it convenient to write Z, = {0,1,...,p — 1}, with addition and multipli-
cation carried out modulo p. So, for example, the multiplication table for Zg
is

|0 1 2 3 4

olo 0 0 0O

110 1 2 3 4 )

210 2 4 1 3 y
\L/‘JJ

310 3 1 4 2 )ﬁﬁ

410 4 3 2 1

When it comes to Zs, it is usually more convenient to write Zg = {0,1, —1}.
Again, we might at times find it convenient to write Zs as {0, &1, 2}, obtaining
the table

lo 1 2 -2 -1
00 6 0 0 0
1{0 1 2 -2 -1
210 2 -1 1 -2
2010 -2 1 -1 2

N

o
|
—
|
N
3V
—_
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EXERCISES

~ 121 Determine the characteristic of the ring Zg of integers mod 6,
show that, in Zg,

a? =0 Sq=0.
. For which integers n does Z,, have this property?
// 1.22. Write down the multiplication table for Zq,

all the non-zero elements.

/ " 1.23. Prove, by induction on n, that the binomial theorem,

(a+b)" = i <:> anTh”

r=0

is valid in a commutative ring R with unity.

. Show that, in a field of finite characteristic p,

(z—y)P =aP —yP.

7( 1.25. Let K be a field of characteristic p- By using Theorem 1.17, deduce,
by induction on n, that

@£yl =27 £4" (z,yc K, ne N).

il e A
1.5 A Reminder of Some Group Theory

It is perhaps paradoxical, given the extensive list of axioms that definc - Held,
that a serious study of fields requires a knowledge of more general ubjects.
Rings we have encountered already, though in fact we do not neerd to; evnlare
any further than integral domains. More surprisingly, we need to kiv . e
group theory. This does not come into play until well through the i« k. ., i yo0
may prefer to skip this section and to return to it when the mate: ;
For the most part I will give sketch proofs only: more detail can miently be
found in [13]. As the title sugsests, this section is a reminder of ti;

and definitions. More specialised bits of group theory, not nece:

(R A

ily covered
in a first course in abstract algebra, will be explained when they are needed,
and some\lgroofs will be consigned to an appendix.
A : .
& Theaxioms for a group were recorded in Section 1.1. It follows from these
axioms that the element e in (G2) and the element o= 7 in (G3) are beid anigue
—
and that

i M= 9

acea=a, aal=qlqg= o -

2
!
|

and

and list the inverses of

]
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0“@"; =5 ;«.1; [
Also, for all a,b € G, Q@ -
- (ab)y ™t =b"tat. - v S esls
The group (G, .) is called a finite group if the set G is finite. The cardinality
|G| of G is called the orderm
In the usyal way, we write a ,a3,... (where a 5 G) ‘for the products \r"g_",
aa,aaq, - . - and wé write a”™ to mean (a hn — (¢®)~!. By a° we meanthe =
identity element e. A group G is called cyclic if there exists an “element a in
G such that G = {a® : n € Z}. If the powers " are all distinct, G is the
infinite cyclic group. Otherwise, there is a least m > 0 such that g7 = e.
The division algorithm then implies, for all n in Z, that there exist integers ¢
and 7 such that .5 ;> v
Nrg 22 o =gl = (™) %" = a7,
and 0 <7 <m—1. Thus G = {e,a,a?,...,a™ '}, the cyclic group of order
m. Both the infinite cyclic group and the cyclic group of order m are abelian. . .
™ A non-empty subset U of G is called a subgroup of G if, for all a,b € G, P st ";é""g

ami e
O abelU = abelU, aclU =alel, (1.22) il

or, equivalently,

- abel = a' ey (1.23)
Every subgroup contains the identity element e. For each element a in the group . .
G, theset {a™ : n€ Z}is a subgroup, called the cyclic subgroup generated skl ol e}
by a. and denoted by (a). If G is finite, this cannot be the infinite cyclic group,
and the order of the cyclic subgroup generated by a is called the order of
the element a. It is the smallest positive integer n such that o™ = e, and is |
denoted by o(a). o A

Let U be a subgroup of a group G and let a € G. The subset Ua =

{ua : ue U} is called a left coset of U. Then Ua = Ub if and only if
ab™? ab— e U, U. Among the left cosets is U itself. The distinct left cosets Torm a

j Bartltlon of G: that is, every element of G belongs to exactly_one left coset :WQ)U

- of U. The mapping u — ua from U into Ua is easily seen to be both one-one

—
and onto, and so, in a finite group, every left coset has the same number of
—
elements as U. Thus

>iS Cmei s
G- _p Loy

|G| = |U]| x (the number of left cosets),

and we have Lagrange’s® theorem: - .

g s Y o Aot
—_ d
Theorem 1.19 - ,}j { E .

IfU is a subgloup of a finite group G, then |U| divides |G|.

3 Joseph-Louis Lagrange, 1736-1813.

VR
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The choice of left cosets above was arbitrary: exactly the same thing ~an be

done with right cosets aU/. That is not to say that the right coset af' and the

left coset Ua are identical, but the number of (distinct) right cosets is the same e

as the number of left cosets; this number is called the index of the .qubgr«m?
If Ua = aU Jor all a, we say that U is a normal subgroup of G, and write
a <b. Equivalently, U is normal, if, for all @ in @ ,\e
Aa = A

a Wa=U.

— e

In this case we can define a group operation on the set of cosets of {/:
(Ua)(Ub) = U(ab).
First, this is a well-defined operation, since, for all u, v in I/
—— Pt i bt

(ua)(vb) = u(av)b = u(v'a)b (for some v in U, since U is normal)
= (uv')(ab) € U(ab).

Associativity is clear, and it is easy to verify that the identity of the group is
the coset U = Ue, and the inverse of Ua is [Ja~!. The group is denoted by
G/U, and is called the quotfent group, or the factor group, of Gy i

Let G, H be groups, with identity elements €G, €H, respectively. A mapping
© :ﬁ_:)_i{ is called a homomorphism if, for all a,be G

.. p(ab) = ¢(a)p(b).
(AN E—ae——es )
It is a consequence of this definition that w(eg) = ey, and that, for all @ in G,

p(a™) = (p(a)) .

If N is a normal subgroup of G, the mapping UN : G- G/N given by

S G

e N

—

vn(a)=Na (aeG)

is a homomorphism, called the natural homomorphism, onto G/N.
ks v L _
If a homomorphism ¢ : G — H is one-one and onto, we say L &

isomorphism. In such a case o' : H — G is also an isomorphisis
e e e

say that H is isomorphic to G, writing H ~ G. If @ maps onto H . ' ooian
4 . — T ——
necessarily one-one, we say that H is a homomorphic image of G.

The kernel ker ¢ of ¢ is defined by =

———
V=N oo e an e s
kerp =9 Hey)={a e G : pla) =ey}.

It is not hard to show that ker ¢ is a normal subgroup of G. The foll+
rem (closely analogous to Theorem 1.9) tells us that every homomaor; ..
of G is'isomorphic to a quotient group of G by a suitable normal SUDELGUD.
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Theorem 1.20

Let G, H be groups, and let ¢ be a homomorphism from G onto H , with kernel
N. Then there exists a unique isomorphism « : G/N — H such that the - X oV, = ((9
e
. L

diagram e &, Y 57
@ SR ED
G— H
A zv/ Lﬁv‘:a

UN /Ct —
G/N

commutes.

Proof

The mapping o : Na — ¢(a) is well-defined, one-one, onto, and a Eﬁnpﬂlﬁr;_

phism — and covy = . — O

EXERCISES 6ot

1.26. Show that every subgroup of index 2 is normal.
1.27. Show that, for every n > 2, the additive group (Z,, +) is cyclic.
1.28. Show that every subgroup of a cyclic group is cyclic.

1.29. Consider the group G of order 8 given by the multiplication table

Sudb Areat °°‘f3 e a b c p g r s
-t ele a b ¢ p g r s
a -

b ab = E¥ 4la b ceqgr s p
LR & B blb ¢c e ar s p gq
< A clc e a b s p g T
Aol = b plp s r g e ¢ b a
- q{qg p s v a e c b

L ol rir g p s b a e
e = b =& s|ls T g p c b a e

(1) Show that B = {e,b} and @ = {e, q} are subgroups.

(i) List the left and right cosets of B and of Q, and deduce that B

is normal and @ is not.
\
)

ak!
be- b < p
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(iii) Let H be the group given by the table

Describe a homomorphism ¢ from G onto H with x

show that this is not necessarily true in a non-abelian grun

P 1.30. Let g,h € A, where A is a finite abelian group. Show titav © yivj
R~ cvr=n divides o(g)o(h). By considering the group given by
L ocayz=Mm +° )
CE\ K v‘gq\,,e(av\ & rou\ e a bz y z
B N*Q\o“\ﬁ’&e ele a b =z y 2z
Galed A \ ala b e z T y
chb)al_‘\v\otf-f PN blb e a y z = :
—_— b e
o ol x)=ots) = 2 T|z y z € a :
T bhe qreut oG yly z = b e a |
vak ocxy) =73 z|lz z y a b e

1.31. Let G be a group and N a normal subgroup of G. Show v very
subgroup H of G/N can be written as K /N, where K i= » <o group
of G containing N, and is normal if and only if H is ner .




image1.jpeg
—
— Rings and Fields

sz o2 ST

"1 Definitions and Basic Properties

Jthough my assumption in writing this book is that my readers have some
nowledge of abstract algebra, a few reminders of basic definitions may be
ecessary, and have the added advantage of establishing the notations and
onventions 1 shall use throughout the book. Introductory texts in abstract
Jgebra (see [13], for example) are often titled or subtitled “Groups, Rings and
*elds”, with fields playing only a minor part. Yet the theory of fields, through
¢hich both’ geometry and the classical theory of equations are illuminated by
bstract algebra, contains some of the deepest and most remarkable insights in
A1 mathematics. The hero of the narrative ahead is Evariste Galois,! who died
1 a duel before his twenty-first birthday.

X Aring R = (R, +, )) is a non-empty set R furnished with two binary op-
srations + (called a tion)and  (called multiplication) with the following

sroperties. (Under the usual convention the dot for multiplication is omitted.)
s P 3 O as
(R1) the associative law for addition:

(a+b)+c:a+(b+c) (a,b,c,€ R); *‘KXK’%K

PERC AN A % b £ R
LRQ) the commutative law for addition: ) ab €T

a+b=b+a (e,bER);

1 Evariste Galois, 1811-1832.

-
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’f_\j%
(R3) the existence of 0: there exists 0 in R such that, for all a in R,

227 " a+0=a;

? \ (R4) the existence of negatives: for all a in R there exists —a in R such that
Xy & ' S
a-db i a+ (—a)=0;
— N W

(R5) the associative law for multiplication:

—
ga—

(ab)e = a(bc) (a,b,c € R);
T
R6) the distributive laws: ‘ "z -
(/)‘ e distributiv ] v o ) e
a(b+c)=ab+ac, (a+bjc=ac+bc (a,b,c€ER).

We shall be concerned only with commutative rings, which have the follow-
ing extra property. RS

(R7) the commutative law for multiplication:

—t)
et

ab=ba (a,b€R).

A ring with unity R has the properties (R1) - (R6), together with the fol-
lowing property.
(R8) the existence of 1: there exists 1 # 0 in R such that, for all a in R,

—

o e\ els

The element 1 is called the unity element, or the (multiplicative) identity

al=1la=a.

A commutative ring R with unity is called an integral domain or. if the

context allows, just a domain, if it has the following property.

(RY) cancellation: for all a,b,c in R, with ¢ # 0,

o)

o
s ca=chb = a=bD.

R T

A commutative ring R with unity is called a field if it has the following prop-
erty.

(R10) the existence of inverses: for all @ # 0 in R there exists ¢~ in R such
—fhat —

/

=

aa l=1.
coglse ) oF 5 A

-
! >

IR R

)

B e T )

PSR BT

RS R




