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5 o o\
o/ \} ?\9,?’ i ‘(&_"a J/‘{? -
ark 2.2 ‘ﬁ/ggf t)

nple modification of the above argument enables us to conclude that@ g

@M’ every finite set {al, az,---, an} has a greatest 1
non divisor. ]
1'the argument leading to the existence of the greatest common divisor, i) e

ssert that “there exists d such that (a,b) = (d),” but give no indication of
this element d might be found. If the domain is euclidean, we do have an

rithm.

 Euclidean Algorithm
bose that a and b are non-zero elements of a euclidean domain D, and
Jose, without loss of generality, that §(b) < 8(a). Then there exist 1,42, - - -

71,72, .. such that

a=qb+ry, §(ry) < 8(b),

=gty 12,  6(r2) < d(r1)
ry=qar2+ 73, O(r3) <d(r2), (2.2)
o= qars +7a, O(ra) <8(r3),

k]

process must end with some 7, = 0, the final equations being
Thos = Qe The2 + k1, O(re—1) < 8(rk—2),
Tk—2 = qkTk—1 -
v, from the first equation of (2.2), we deduce that
(a,b) = (b,m1); (2.3)

every element sa + tb in (a,b) can be rewritten as (t + sq1 )b+ sr1 € {b,m1), P
every element xb-+yry in (b,r1) can be rewritten as ya+ (z—yq)b € (a,b).
ilarly, the subsequent equations give

<b,7’]> = <T1‘T2) ’ <T11T2> = <T27T3> Yyt
(Fi—3,Tk—2) = (Tk=2,Tk—1) » (Fr—gsTh—1) = {TE-17 - (2.4)

m (2.3) and (2.4) it follows that (a,b) = (re—1), and so rx_; is the (essen-
ly unique) greatest common divisor of a and b.

« 3 s
xarr\ple 2.3 \cjf.o s
Aermine the greatest common divisor of 615 and 345, and express it in the
1 6152 + 3457 ) e
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- v My T 615 = 1 x 345 + 270

“y
4% VM‘(JSQ:'D)345 ‘ix270+r75 \ 23 "Lf
270 =3 X 75 +45,
(s a
P ??\ i
£ é‘glqu):g‘g
ans

/JJ,A; 15.= 45 — 30 = 45 — 7575 axAde - 6%35

e G . e

o —2x<w)—7sfwﬁ et
NGE ’t/ ¢ N — .

ST=2%x270-7x (345 270) = 9 x 270 — 7 x 345 i

3;(
J}’ /:9><(615—345)~7><345:9><615—16x345.
’ -

'Y/ / ) R § - 2 5
T2 ox oS oy S 222 o e (o

% =
\ Two elements a and b of a principal ideal domain D are coprime if their
_—

il 0N

greatest common divisor is 1. This happens if and only if there exist
D such that sa +tb = 1. For exarnple 75 and 64 are coprime:

v r
* 75—1><64+11 SAS—25 Aus
64—5><11+g - Ao -7
1,L~1><9+2 e B g

9=4x2+1,
TN o

and (/L[ —

1=9-4%x2=9-4(11-9)=5x9~ 4x11=5(64—-5x11) -4 > 11
o ———

T =5 x64—29x11="5x 64— 29(75 — 64) = 34 x 64 — 29 x 5.

J\ EXERCISES

= 2.1. For the following pairs (a,b) of integers, find the greates
divisor, and express it as sa -+ tb, where 5,t € Z

(i) (1218,846);  (ii) (851,779).

2.2. Show that a WMM

and only if it is an integral domain.

clS 2 ’g’qg
\ 3 @ éa(

xacf

x3us+tfa
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2.3. For another example of a euclidean domain, cousider the set I" =
{z+yi: z,y € Z} (where i = v/—1) of gaussian? integers.

(i) Show that I is an integral domain.

X_ (i) For each z = z +yi in I', define §(2) = |z + yil* = 2% + y*.
Let a,b € T', with b # 0. Then ab~! = u + v, where u,v € Q.
There exist integers ', v’ such that u—u/| < %, [v—v'| < §. Let
g =u'+1iv'. Show that a = gb+r, wherer € I and §(r) < 1 6(b).

2.4. Let p be a prime number, and let
D, ={L €Q : r,sare coprime, and p} s} .
(i) Show that D, is a subring of Q.
(i1} Describe the units of Dy.

(i) Show that D, is a principal ideal domain.

i 1 A I AL
o D 9 AL P U

2.2 Uniqué_Factorisation .

Ta) o1 pLe)

Let D be an integral domain with group U of units, and let p € D be such that

#°0, p ¢ U. Then p is said to be irreducible if it has no ’p’rg[é“i' Téictqrg, An

squivalent definition in terms of ideals is available, as a result of the following
sheorem: AN : \ \ s40 )
D - s v s 2o b

Theorem 2.4 = s

Let p be an element of a principal ideal domain D. Then the following state-
ments are equivalent: N e R o

(i} p is irreducible; 2N

i) {p) is a maximal proper ideal of I);

iii) D/(p) is a field.

Proof ‘
S
(i) = {ii). Suppose that p is irreducible. Then p is not

propex ideal of D. Suppose, for a contradiction, that there is a (principal) ideal
& ~==my —_— L e}

"2 Johann Carl Friedrich Gauss, 1777-1855. g

="
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2 xcwz 5 Cr A - SiNo |
(q) such that (p) C (q) c D. T hen p € (g), and so p = aq for some non-unit a )

This cont;a;dx_cts the supposed 1rreduc1b1h’cy of p.

v e dols ag = Q
Py :
(ii) = (iii). Let a+(p) be a non-z zero element of D/(p). Then a. ¢<;} a7

s the
ideal {a) + JQ) properly contains (p) We_ére aésummg that (p) > waxiuai, and
so it follows that (a) + (p) = {sa +tp~ s,t € Dﬁ Hence tucee »aist 5,0 in
) J A\ Dsuch that sa+tp =1, and from this we deduce that (s+ (p),t((_ R = l+<g,>‘,>

S{/ P Thus D/({p)is a ﬁeld g -

, ¥ (iii) = (i). If p is not irreducible, then there exist non-units g qud ¢ -Sudnthat
14 4 p=qr Then g + (p) and 7 + (p) are both non-zero elements ot L/ (p), but

] — X Q= (;\-«_,?;H_J‘ ~S
sarbe=) o (@+E) 0+ E) =p+ ) =0+0). "5 A
SR~ <o
(Thus D/(p) has divisors of zero, and so certainly is not a field .-,J’e- Uo L= [
Sl = — o

) o0 \\ 2 s oA Sy Mo ) \L‘V 1 1—; evo dioige O s © \)ﬂ

An element d of an integral domain D has a factorxsahnn into irre-

£ 74 = <% = \+<tgucible elements if there exist irreducible elements py,po, ..., 7. such that

2. 23 \

'd P1D2 - - - Pk The factorisation is essentlally unique if, for irreducible ele-

| ments py,pa,.--,px and q1,92, - -, q, —_
‘:;._ (mavﬁsf’? (=L ) EeSY) 7-a

T §_= Pip2---Pk=q192--.qu

o

i A~ . .
Amplies that k = ! and, for some permutationfoj {1,2,...,k} » 102 kL

s :
[ o > Pi ™~ Qo(s) (Z: 172)"'3k)'

; o 'f"./ An integral domain D is said to be a factorial domain, or i« i« unique
fh ° : factorisation domain, if every non-unit a # 0 of D has an esscrially cowgue
gl factorisation into irreducible elements. Here again Z, in whicl, ‘1 7 sitive
- { < and negative) prlmem are the irreducible elements, provides ~<>qlv\;ﬂmr
v \ ) example: 60 = 2 x 2 x 3 x5 5, and the factorisation is essentially uniyue, tor

nothing more different than (say) ( 2) x (-5) x3x2is p0551ble
= \ ,!»1 O\ T"//A./\w

oz m a1 )

ezt el Y

T =5y 7 o) . )
Theorem 2 5 \ N W
P E;fer rincipal ideal domain is factorial. .
P S y princip g g %
9% A A
T Proof
" We begin with a lemma which at first sight deals with somethm Jipe ot
T T— B ] et =
¢ =y beig
S
Lemma 2.6

In a principal ideal domain there are no infinite ascending chaine i wicais.

P i . N G L T R “ A ¢im
2R N Q!;Q&-W 2hy KW £
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Proof
In any integral domain D, an ascending chain Aead L5020

LChLCIC

of ideals has the property that I = Uj»1 I is an ideal. To see thls ﬁrst observe
that, if a,b € I, then there exist E l sucE that a € Ik, bel,andsoa—be

{max{k,ll C I Also,ifa € I and s € D, then a € I for some k, ‘and so ‘Ai‘
sa €l C1I. SN pes woge TN

2 L UV

Now suppose that D is a, princjpg! jglgg_lﬁ}riorr}arh}z and let

(a1) € (a2) S (ag) S --- (2.5)
s\
be an ascending chain of (prmc1pal) ideals. From the previous paragraph, we

know tha.t the union of all the ideals in this chain must be an ideal, and, by our
assumptlon about D, this must be a principal ideal {a). Since a € U]\1 {a;),

we must have that a € {ag) for some k. Thus (a¢) C (ax) and, since it is clear

that we also havq/<ak) C {(a), it follows that (a) = (ax). Hence

\z’ Sle>

|

< (a2 p o
~ 2 e k) = (aks) = (ake2) - = (a), .
'and so the infinite chain of inclusions (2.5) terminates at {a)- O
N
Returning now to the proof QfATheorem 2.5, we show first that any a # 0 in

D can be expressed as a product of 1rreduc1ole elements Let a be a non—umt inee,lae &
D. Then either a is irreducible, or i has a ;Loper divisor ‘ay. Similarly, either a;

is irreducible, or a; has a proper divisor az. Coﬁtmumg, we obtain a sequence 2
6 = ag,a1,0z, ... in which, for { = 1,2,..., a; is a preper divisor of Qi1 The 2
sequence must termmate at some a, since otherw1se we would have an infinite | g
ascendmg sequence o '

nd- {a) Cla1) Claz) C -+, 5 8 By
and Lemma 26 would be contradicted. Hence a has a proper irreducible divisor
=71, and @ = 2161 If b, is irreducible, then the proof is complete. Otherwise ‘
we can repeat the a.rgument we used for a to find a proper irreducible divisor —
29 of by, and @ = z;23by. We continue this process. It too must terminate, since

otherwise we would have an infinite ascending sequence

(a) C (ba) C(b2) C -

in contradiction to Lemma 2.6. Hence some b; must be irreducible, and so
a=2123...2.1b is a product of irreducible elements.
To show that the product is essentially unique, we need another lemma:

)
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Lemma 2]

Let D be a principal ideal domain, let p be an irreducible element in i3, i .
let a,b € D. Then

plab = pla or p|b.

be 1, and so there exist s, t in D such that sa + tp = 1. Hence sab + tpb -
and so, since p clearly divides sab + tpb 1t follows that p | b

It is a routine matter to extend this result to products of more than twa <.
ments: s S o -

bs ’9/ i

Corollary.28 :

Let D be a principal ideal domain, let p be an irreducible element in /7, i
let a1,az2,...a;, € D. Then ’

plaias...am = plag or plag or ... or pla,.

3y Netm OVcleads P1P2---Dk~qi192---qr, Ly

where p1,pa,...,pk and g1,4qo, .. .,q are irreducible. Suppose first that k = 1.

Then I =1, since q1¢> - .. ¢ is irreducible, and so p; ~ ¢;. Suppose inti«

that, for all n > 2 and all k < n, any statement of the form (2.6) impi- . i

k =1 and that, for some permutation o of {1,2,...,k},
e P I e

C,\J«G—; qi ™~ Po(i) (i=1,2,...k).

L?L_Lfﬁﬂ. Since p1 | q1g2---q, it follows from Corollafy»ﬁ,tﬁat 7
some j in {1,2,...,1}. Since g; is irreducible and p; is not a unit, «
that p; ~ g;, and by cancellatlon we then have ®, w,_ ;

s \ v 4 g
S— ) 94 ¢
< s ;\/

\Jé«a“m»” w7 P2P3---Pn~q1---95—1G5+1 - - \ NN
=4 b A

By the induction hypothesis, we have that n—-1=1-1and tl1

{L,2,...,n}\ {j}, @& ~ po(s for some permutamon o of {2 KT T

/*;sxtendlng o to a permutation o of {1,2,...,n} by defining 0(1)

the desired result. 1S
=\ = \5\ ~ 9
\

—_— \r; 2w} = Sy g | (A

\D

B oo I 4 el O &= a o s A%
Proof = s el LT 23]
, \Z LT e s ) - N AceA L
g Suppose that p | ab and pJ a. Then the greatest common divisor of @ au. -

i
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As a consequence of Theorem 2.1, we have the following immediate corol-
lary:

Corollary 2.9

Every euclidean domain is factorial.

EXERCISES

2.5. (i) Determine the group of units of I', the domain of gaussian inte-
gers.

(i) Express 5 as a product of irreducible elements of I'.
(ii) Does

13 =(2+3)(2—31) = (3 +2:)(3 - 24)

contradict unique factorisation in I'?
2.6. Let R={a+biv3: a,b € Z}. ngé\;/‘}
(i) Show that R is a subring of C.
(i) Show that the map v : R — Z given by
wla+ biv3) = a® + 3b?

preserves multiplication: for all u, v in R,

p(w) = p(u)p(v) .
Show also that ¢(u) > 3 unless u € {0,1,—1}.
(iii) Show that the units of R are 1 and —1.
(iv) Show that 1+i+/3 and 1 —i+/3 are irreducible, and deduce that

R is not a unique factorisation domain.

A, a

2.3 Polynomialis

Throughout this section, R is an integral domain and X is a field.

For reasons that will éﬁieygé,_;vgegin by describing a polynomial in ab-
stract terms. The more familiar description of a polynomial will appear shortly.
A polynomial f with coeflicients in R is a sequence (ap, ay,...), where a; € R
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for all > 0, and where only finitely miany of {ag, a1, ...} are non-z ;
last non-zero element in the sequence is a,, we say that f has degree \

* write 8f = n. The entry a,, is called the leading coefficient of f ¢ an 1
/we say that the polynomial is monic. In the case where all of the .

are 0, it is convenient to ascribe the formal degree of —oco to the polnomial

(0,0,0,...), and to make the conventions, for every n in Z,

—oo<n, —0o+(—0)=-00, —co+n=-—00. (2.7)

Polynomials (a,0,0,...) of degree 0 or —oo are called constant. For ... hors o
small degree we have names as follows:

ey

of | 1 | 2 | 3] 4 | 5 | s

name ‘ linear l quadratic I cubic ’ quartic ! quintic | sextic
— e mm——

Addition of polynomials is defined as follows:

(Fortuna.tely we shall have no occasion to refer to “septic” polynomml@')

S ~oe=(a0,a1,--.) + (bo, b1, .. .) = (ag + bo, a1 +b1,...) .

</

Multiplication is more complicated:

(ag,ay,...)(bo,b1,...) = (CO,C1,---),
where, for k =0,1,2,...,

Ck = Z a;b; .
{(5,3) :i+5=k} ¥
Thus h 3 R

x

j N y

o = aobo, @)= aqdy +arbo, ¢ = agbs + a1by +azbo, ... .

With respect to these two operations, the set P of all polynomials with
coefficients in R becomes a commutative ring with unity. Most of the ring ax-

ioms are easily verified, and it is clear that the zero element is (0,0,{... j, the
unity element is (1,0,0,...) and the negative of (ag,a1,...) is (—ag. - 71....).
The only axiom that causes signiﬁcantwdifﬁculty is the associativil: o=
plication. Let p = (ap,a1,---), ¢ = (bo,b1,-..), 7 = (co,C1,...) be pivnomi-
als. (Recall that, in each case, only finitely many entries are non-z - .. Then

(pg)r = (do,ds, . ..), where, for m =0,1,2

R R B

/ dm Z ( Z (libj)cz = Z ) a,b,
(k) ktl=m}  {(3,9) : i+5=k} {(6,3.0) i+ gH+i=m}
D D D D I

{(z,n) :i+n=m} {(j,l):j-%—l:n}M";‘/ .
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ch is the mth entry of p(gr). Thus multiplication is associative.

There is a monomorphism 6 : R — P given by e
wp? T

may identify the constant polynomlal O(a) (a,0,0,...) with the element !
fR.
‘Let X be the polynomial (0,1,0,0,.. .). Then the multiplication rule gives

=(0,0,1,0,...), X*® = (0,0,0,1,0,. _.) and, in general,

1 ifm=n
0 otherwise. '

X" = (zo,%1,---), Wherezm:{

en a polynomial -
(a0,a1,--.,@n,0,0,...)

degree n can be written as *

8(ao) + 0(a1)X +0(a) X2 + -+ 0(an) X",

ao + a1+ aX+ - +an XY (2.8)

N <

ve make the identification of 8(a;) with a;.
We have arrived at the common definition of a polynomial, in which X l
fega.rdéd as an “indeterminate”. The notation (2.8) is certainly useful, and
wredly makes the definition of multiplication seem less arbitrary. It is im-
rtant, however, to note that we are talking here of polynomial forms, wholly
-ermined by the coefficients a;, and that X is not a member of R, or indeed
anything else, except of course of the ring P of polynomials. We sometlmes
ite f = f(X) and say that it is a polynomial over R in the ‘indetérmi-
te X. X. The ring P of all such polynomials is written R[X]. We refer to it

1plv as the polynomial ring of R. D 32\ L e A s oL -
We summarise some of the main fact< about polynornnls7 some of which we
eady know. — S A s ¥
- Jot B2
™ N Ui
1eorem 2.10 L5

| .t D be an integral domain, and let D[X] be the polynomial ring or D ‘Then

i D[X] is an integral domain.

| if p,q € D[X], then
d(p+ q) < max {dp,0q} -




image12.jpeg
(iii) for all p,q in D[X],

o

s Mo =op+2q.

A

N
(iv) The group of units of D[X]

s NS
Proof ,'° s, - o A A
A O I
(i) We have already noted that D[X] is a commutative ring with 1 0 £ ey

that there are no divisors of 0, su
ﬂ—xh

ppose that p and g are non-zer: polynem ais
with leading terms @m, by Tespectively. The product of p and g ther has losding
. term a,,b,. Since D, by assumbﬁi;na,"has no zero divisors, the coctive s

s is non-zero, and so certainly PgF#0. 7 A S »
P \J\ (ii) Let p and g be non-zero. Suppose that p = m, 0¢ = n, st suppose,
(@) k/\/f

without loss of 'g-gﬁ_érality, that m > n. If m > n then it is clear ot the
L leading term of ptgis Gy, and s;@a(ﬁ q) :blmap, 8L}Z;If ™= then we
Pt A 14, 4 May have %_4:17,;\): 0, and so all we can say is that d(p + q) < max [3p. 9g).
?- (b, " The conventions established in (2.7) ensure that this result holds also if oue or

Clm o o ;;g“ﬁ‘both of p, q are equal to 0,
Pqi(%an x”*mﬁﬂ)Byﬁhea@Nmm“in(Wifp??iﬂj?iﬁ@t@m%&hﬂlamq):sz;g;i

~—— 9p + @z If one or-both of p-and q are ze1o, then the result hoids hy ipe

7 Sememsimpmme—sc.[) conventions established in (2.7). yLr O S

= L (iv) Let p,q € D[X], and suppose that Pg = 1. From Part (iii) we loduee that
— A b = 98 T :
S CalfOp = = = ; 2 1
R p_ '(’)g 0. Thus p,q € D, and pq 1if and only if p and g are ]
i of units of D. & (4 .
A

Since the ring of polynomials over the’ integral domain D is itself an integral

dom_alin, we can repeat the process, and formt?}ierr'i—fgm of polynoniais with
coefficients in D[X]. We need to use a different letter for a new indeterminate,

© P Ao and the new integral domain is (DIX))[Y], more usually denoted by /21X ¥ T
''''' T consists of polynomials in the two indeterminates X and Y with <. liciesie .o
{ \ I D. This can be repeated, and we obtain themte"é?z;l domain D[X;. ¥, ., ¥
o W,’» o v o | The field of fractions of D[X] consists of rational forms
grel 3 Gt+aX+-- g, Xx™
ik bo+biX -t b, X
R i T the denominator is not the zero polynomial. The field is denoted hy
D(X) (with round rather than Square brackets). In a similar =~ -
DT Y rives at’t_hgﬁgldﬂﬂ_(if‘h{gu}_{@m rational forms in the n indeterminates
I s K s Xn, with coefficients in D.
e g

p “‘,5:/{: The point already made, that a polynomial is wholly deterinined by iy
coefficients, is underlined by the following result:

(oD N x) Cov.p
D 6 DK Fetees
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"heorem 2.11

et D, D’ be integral domains, and let ¢ : D — D’ be an isomorphism. Then
he mapping (p D[X ] = D’[X] defined by

$lag + alX iy a,,X") = p(ao) + plar)X +--+ w(an)X"

; an isomorphism.

‘roof

he proof is routine. : ' O

The isomorphism ¢ is called the canonical extensmn of . A further
xtension ¢* D( X ) — D'(X) is defined by -

~«x*

(f/g) (f)/@(g) (£/g € D(X)) . (2.9)

We shall be especially 1nterested in the ring K[X] of polynomlals over a,
eld K. The group of units of K [X] is the group of units of K, namely the
roup K* of non-zero elements of the | field 1 K, and i in the usuafﬁfay we write
~g1ff—agf0rsomea1nK*

The integral domain K[X] has an important property closely analogous to
property of the domain of integers: LR DX

‘ Oyvex « S
"heorem 2.12 # . i P
Y O\
et K be a field, and let f, g be elements of the polynomial ring K[X ], with ’
4 # 0. Then there exist ur unique elements 9T in K [X ] such that f = qg +7 and &
57 < g = 6 , s
'roof 2/
[£f = 0 the result is trivial, since f =0g+0. So suppose that f % 0. The proof el
4 by induction on Bf First, suppose that Bf =0, so that f € _K_'* Ifag =0 =
Iso, let ¢ = f/g and r = 0; otherwise, let g =0 and r = f. -7
Suppose now that 8 f = n, and suppose also that the theorem holds for all =
polynomials f of all degrees up to n — 1. If Hg > Gf, let ¢ =0and r = f. i
° 0 suppose now that 8g < 9f. Let f, g have leadmg terms a, X", b ek
aspectively, where m < n. Then the polynomial T = o

<

Q

[
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5\,0’3‘ l,uv/;_; {\__ A J} — C\ i J <
has degree at most 7 — 1, and ) we may aosume that there exist . Coyn,
that h_= qug + r, with Or < 8g. It follows that f = gg+ 1, » : \r;

q1+ (an/bm)X" s,
To prove uniqueness, suppose that

Then r—r' = (¢ —q)g, and so 8((¢' —q)g) = a(r—r’) < 8g. By Theorens 4.,
this cannot happen unless ¢’ — ¢ = 0. Hence q = ¢/, and consequcic.

also. — g, —p @ W
. Example 2.13 1= vq =My
B(d- 2) %523 S
! An actual calculation of g and r for a given pair of polynomials f and .+
S b sl 7 a procedure reminiscent of a long division sum. Let f = X% — X i o
TP GE > o -0 .
dCg-q)z o A s ,‘* 9
X2 -3X+ 7
X2 43X +2[Xx* — X
X4+3x3+2X2
-3x3—-2x°>- X
-3X3-9X%*—6X 4 -
y 7X2+ 5X

TX2+21X+ 14:
-16X— 14 i

Thus X4 — X = (X2 -3X +7)(X?+3X +2) - (16X + 14).
Alternatively, one may equate coefficients in the equality

XX =(X24pX +q)(X?+3X +2)+ (rX +5),

finding that p=-3,¢=7,r = —16, s = —14.

s et Jepyea

/ Theorem 2.14 > i
. 4 /;,7 S o (’ £ s\ -
//~ If K is a field, then K[X] is a euclidean domain. '

Proof

The map O does not quite have the properties of the map ) im/;‘» ved
g "'_\“u—'—_"._'—j . . &

definition of a euclidean domain, but if, for all f in K[X] we defitini tia«

with the convention that 27°° = 0, we have exactly the right pre
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a consequence of Theorem 2.1, Coroliary 2.9 and Theorem 2.4 we can
arise the important properties of K[X] as follows:

rem 2.15
" be a field. Then, N @z ’

rery pair (f,g) of polynomials in K[X] has a greatest common divisor d,
hich can be expressed as af -+ bg, with a, b in K[X l;

“[X] is a principal ideal domain;

D

Y

[X] is a factorial domain;

f € K[X], then K[X]/{f) is a field if and only if f is irreducible.

GeeRImt B LR

iple 2.16

wuclidean algorithm is valid in K [X] (if K is a field) but the calculation can
dious. Taking a very simple case, we consider the polynomials X -+ X +1
X 4+2X —4in [X ] Then one-may calculate that

X°+2X 4—( —1)(X2+X+1)+2A 3
X2+X+1:(l +5eX-3)+ 2,

50t the greatest common d1v1sor 1s = _}Recall however, that the group of
of QL:X ] is Q" =Q \{0} and so &2 ~ 1 _The two polynomials are coprime.

vinding” the algorithm gives \_0\_ e o) ?—"“";""
\A. 2 1 5 =l -4 S O =
B (X2 + X +1) - (3X+])(2X-3) 15 ~
4(X2+X+1) (iX ){(X3+2g( 4) - (X -HX2+ X +1)]
=(Ix2+3Xx - %)(X2 +X +1) - (3X+5% )(X3 +2X ~4). .
6 a4 A S = a

“he irreducible elements in the ring K[X] of polyromials over K will be
ijor area of interest in subsequent chapters.

V\'\‘w\,x Lz e
mple 2.17 ¥

e X? + 1 is irreducible in R[X], it follows from Theorem 2.15 that
1/(X?+1) Js a field. Denote it by K. The elements of K are residue classes
1e form a -+ o_{( + (X 2 1) where a,b € R. The addition is given simply by

rule P e
. 2

L DX (X4 1)) 4 (e HdX + (X7 +1>):(a,+c)+(b+d),x+<x‘2+1>.

e

)
-
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Multiplication is a little more difficult:

(a+bX + (X2 +1)) (c+dX + (X?+1))
=ac+(ad+bo)X +bdX2 4 (X2 ¥1) o
o A8 oAbt el -
= (ac — bd) + (ad + bc) X H+bd(X? + 1)+ (X2 + 1)
= (ac—bd) + (ad +bo) X + (X2 + 1).

This is reminiscent of the rule for adding and multiplying compley adiang,
Indeed it is more than reminiscent: the map ¢ : R[X]/(X241) -3

P(a+bX + (X2 +1)) = a+bi (a,b€R),

is in fact an isomorphism.

We have already emphasised that polynomials, as we have defince ‘hein. arve

polynomial forms, entirely determined by their coefficients. For exgmic. o we
write f =ag +a; X +--- + an X™ =0, we mean that [ is the zero polvnomial,
that is to say, g = @1 =---=an = 0. Let D be an integral domuis aud let

@ € D. The homomorphism 04 from D[X] into D is defined by
Oalag+ a1 X + -+ X"y =ap+ara+ -+ ana™ . " (2.10)

The verification that this is a homomorphism is entirely routine, and i~ ~mit bed.
We frequently want to write da(f) more simply as f (a).

If f(o) = 0, then we say that o is a root, or a zero, of the P
The following result is crucial to the understanding of roots and factrisui

Theorem 2.18 (The Remainder Theorem)
Pt

Let K be a field, Jgt B € K and let f be a non-zero polynomial in K Q}x‘i.,z‘}_len
the remainder upon dividing f by X — 8is f(8). In paftfiéﬂér_,’ﬁ-i:f_’a root of
f if and only if (X — 8| f- N

v
5t L7

0

— oo
- e P

P
\ =

|

\

/(

Proof
By the division algorithm (Theorem 2.12), there exist g, T in K[X1 such that

f:(x—ﬂ)Q-i-T, where 3r<(’9(}(~/3):1.

Thus r is a constant. Substituting 3 for X, we see that f(B)=r.Tn -

F(8) = 0/if and only if r = 0, that is, if and only if (X -5)| @ § -

o S———
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(ERCISES O ey 2 :
DI A Sl ‘»E\,_?i.www”
.—»—*““"‘”*“M
2.7. Verify the distributive law f(g+h) = fg+ fh for a polynomial ring.
2.8. For the following pairs (f,g) of polynomials, find polynomials g, r
) such that f =qg+7, Or<J0dg. oo
@) f=X34+X+1,9=X?+X+1;
Gy f=X"4+1,g=X3+1
2.9. Show that Z[X] is not a principal ideal domain.

2.10. Show that, even if K is a field, K[X,Y] is not a principal ideal
domain.

2.11. For each of the following pairs (f, g) of polynomials, find the greatest
common divisor, and express it in the form pf + gg, where p and ¢
are polynomials: _—

Q) f=X0+X4-2X3-X2+X, g=X*+X -2
Gi) F=X3+2X2+7X -1, g=X*>+3X +4.
2.12. Show thai, in Z,[X],
XX -1)(X-2)...(X=(p-1) =XP-X.
2.13. Let K be an infinite field, and let f, g be polynomials of degree

n. Suppose that there exist distinct elements ay, g, ..., Qni1 in K
such that f{oy) = g(oy) (i =1,2,...,n+1). Show that f =g.

>

.4 Irreducible Polynomials

1 Example 2.17 we saw a way of constructing the complex field from the real

21d. This is a very special case of a more general technique.

"heorem 2.19

22 A o a2 aSD

et K be a field, and let g(X) be an irreducible polynomial in K[X]. Then
e

(X)) is a field containing K up to isomorphism.

X/ 4ot

A\
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Proof

We know from Theorem 2.15 that K[X]/(g(X)) is a field. The map ¢ : K —
K[X]/{g(X)) given by ]

Naer® anlS  pla) =a+{g(X)) “(a€K)

is easﬂy seen to be a homomorphlsm It is even a monomorphlsm since

(>/&¥ 27 gt (g(X)) = b+ (g(X)) = a—be (g(X)) = a=b.

o

It is clear, therefore, that we will have a highly effective method of constrmct-
ing new fields provided we have a way of identifying irreducible polynoemials.
Certainly every linear polynomial is irreducible, and if the field of cae:!'s euis
is the complex field C, that is the end of the matter, for, by the fundaiwital
theorem of algebra (see [8]), every polynomial in C[X] factorises, essent.ally
uniquely, into linear factors. Linear polynomials, it must be said, are »f 'ttle
interest as far as Theorem 2.19 is concerned, for K[X]/(g(X)) coincicies. .- ik
(K) in this case, and so is isomorphic to K: if g(X) = X — a, then. = b
in K[X] we have that f = q(X —a)+ f(a), and so f+(g) = f(a)+ (g oK),

For polynomials in R[X] the situation is only a little more comip: B3
Consider a typical polynomial

g(X)=an X" +an 1 X"+t a1 X +ag 212)
in R{X]. If v € C\ R is a root, then

Y + a1y +ap = 0.

Hence the complex conjugate of the left-hand side is zero also. Thai - since
the coefficients ag, ay, - .., a, are real,

an¥" + n17" 7 4+ +a.

Thus the non-real roots of the polynomial occur in conjugate pairs, wud we
obtain a factorisation

9(X) = an(X = B1) .- (X = B)(X =m)(X = 71) - - (X = s)( A

in C[X], where B1,...,8- € R, 1,...,7s € C\R, 7,5 > 0 and 7 + 2:
gives rise to a factorisation

(X =61) . (X =B (X = (n+7)X +7mn) - (X = (s + 7.

in R[X]. In this factorisation the quadratic factors are irreducible i ™ =
if they had real linear factors, they would have two distinct fact.:
C[X], and we know that this cannot happen.

We have proved the following result:
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N \}‘ AP L e e S i
eorem 2.20 . —_— LU
we oz S ol - Y
o irreducibie elements of the polynomial ring R[X] are either linear or N
gpdratic. gvery polynomial (2.12) in R[X] has a unique factorisation s
r\)n’ ) o et 28
o

e X — B) o (K~ BCC 4 MK ) oo (AKX

R[X], where a, € R, r,s>0and r+2s=n. e

We can of course easily determine whether a quadratic polynomial aX? +
"+ ¢ in R[X] is irreducible: it is irreducible if and only if the discriminant
—4ac < 0.

This much is relatively straightforward. Unfortunately, we shall be mostly
erested in Q[X], and here the situation is not so easy, for, as we shall see, in
X] there are irreducible polynomials of arbitrarily large degree.

Quadratic polynomials present no great problem:

ieorem 2.21 )

e I o \lnf

let g(X) = X2 + a1 X + ag be a polynomial with coefficients in Q. Then:

o if g(X) is 1rreduc1ble over R R, then it is 1rreduc1ble over Q

ﬂ) if g(X) = (X — B1)(X — B2), with B1, 82 € R, then g(X) is irreducible in
Qx] 1f and only xf 61 and (o are 1rratxonal

:\-«’:‘”é
\‘;'/00{: ) vrduciy \4’9 -} R L/‘}j

DLet g(X) be irreducible over R. If g(X) = (X — 1)(X — g2) were a factori-
aiion in Q[X], it would also\be a factorisation in R{X], and we would have a

> ——T

> soatradiction. - rohar VL

C

) If By, P2 were rambnal we would have a factorisation in Q[X], and g(X}
ald not be irreducible. If 81, B2 are irrational, then (X — B1){X — B2) is the
only factorisation in [X ], and so a factorisation in Q[X ] into linear factors is
Mo Atal Iasiein

t possible. . \ O

sk 209 X

ith regard to part (ii) of the theorem, it is clear that, if one or other of 31, B2
irrational, then both are irrational.

AN
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Exam;;Ie 2.23

Examine the following polynomials for irreducibility in R[X] and (4 |:
—_—

s\
b OX*4X+1,0X°+X ~1,5X + X 2.
oF
. VS ,
Solution ‘ AR Y o p
) The first polynomial is irreducible over R, since the discriminant is --3. Tt
follows that it is irreducible over Q. -
() The second polynomial factorises oveiéR as (X — B1)(X = Bo), wi:
—1+\/—)é —1—04 @ (x
b =3
It is irreducible over Q. Mg
The third polynomial factorises over Q as (X — 1)(X + 2) and so is pot
o & irreducible. a
()\:8 S  To take the matter further we need some new ideas. Observe that in - .in-
. .ple 2.23 the factorisation of X2 + X — 2 over Q is in fact a factorizat!
Yeckaci®'t ‘7 This prompts a question.
N e Is it possible for a polynomial p(X) in Z[X] to be irreducible ove i
not over Q? ) £ oawn N e \\\
x ’Ah.‘, me \(‘;ni .
y The answer is no. 4 \ DT LA xR i AN 8N \
- :‘\ 8 X Mé’}‘/) AVN 1:;_; O :@ ST ) \
3] | Theorem 224 (Gauss's Lemma) . o000 fecnesved 5

polynomial in Q[X ], is irreducible over Q. g . . ¢ =

P
20 5 \) S A

Proof Se\NA U els ey A

Suppose, for a contradiction, that f = gh, with g,h € Q[X] and 9¢ 35‘&
Then there exists @ positive integer n such that nf = g’h’, where o'\
) Let us suppose that n is _the smallest positive integer with this prog

EW’M P g maptmX o taX, K=botb X+ +bxh

- - S Pve et

If n =1, then ¢ = g, K = h, and we have an immediate contiaus:

Otherwise, let p be a prime fact01 of n. e S R T
— x?_““ = 1

Racter

Lemma 2.25  w. .

Either P leld(,b all the coef’ﬁueat% of g or p divides all the coefficie

A\
}

Let f be a polynomial in Z[X], irreducible over Z. Then f, consid: as
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Proof .

\/@ U3 > - A\ RP D
Suppose, for a contradiction, that p does not divide all the coefficients of g s

. S

and- that p does not divide all the coefﬁments of k. Suppose that p divides

ao,-..,0:_1, but pf a;, and that p divides by, .. .,b;j—1, but p} b;. The coefficient
ofX""] in nf is ] t s

xS N
LT s G,ob.H,J + +G,Zb s » (J.Hjb() RNawdEe™
N - 5
In this sum, all the terms precedmg a;b; are divisible by p, since p divides
ag, - aJ 1; and all the terms following azb are divisible by p, since p divides
bo, _1. Hence only the term a;b; is not divisible by P and it follows that

the coefﬁc1ent of X**7 in n nf is not 5t divisible by p. This gives a contradiction,

since the coefﬁcxents ofef are integers, and so certainly all the coefficients of nf
are divisible by p. P O

. ——— = :,»’L‘Q’? /

Returning now to thczﬁyroof of Theorem 2.24. we may suppose, without loss
of generality, that g’ = pg”, where g” € Z[X]. It follows that (n/p)f = ¢"h’, and
this contradicts the choice of n as the least positive integer with this property.
Hence a factorisation over Q is not possible, and f is irreducible over Q. O

We have seen that there is no difficulty in determining the irreducibility of
quadratic polynomials in Q[X]. Theorem 2.24 makes it reasonably straightfor-
ward to deal with monic cubic polynomials over Z.

B
Example 226 2 = O Mo @ L e =
Show that g = X® + 2X? +4X — 6 is irreducible over Q.
—

Solution
If the polynomial g factorises over Q, then it factorises over Z, and at least one
of the factors must be linear: Pl > Lo *‘ >

g_xv+2x2+ AT = (z«?'—a)<X?+bX+c). (2.13)

~oes =6 )

Then ac = 6 and so a € Hzl 42,43, +6}. If we sabstivute a for X in g we

must have g(a) = 0. However, the values of g(a) are as follows:
Jaj-1j2]-2|2|=8]|6]| 6

g(a) \] 1|9 | 14 \ -10 | 51| —27 | 306 \ ~174

—_

e

v Mopd A
y JSST

: &

W

“§=5 W
W - e
“ o
A C J

R

AN

-
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This technique will not work for a polynomial of degree exceeding 3, and
indeed there is no easy way to determine irreducibility over Q. One important
technique, due to Eisenstein?, is as follows:

Theorem 2.27 (Ei_;grls/teilnig criterion) * -

I &

Let : N ,';?- Ls® 3 Rest ~

fX)=a+a X+ - +a,X"
be a polynomial in Z[X]. Suppose that there exists a prime number p such that
() pfan,
(i) plai (¢ =0,...,n—1),
(ifi) p?f ao-

Then f is irreducible over Q.

=" Proof
By Gauss’s lemma (Theorem 2.24), it is sufficient to prove that f is irreducible
‘over Z. Suppose, for a contradiction, that f = gh, where

g=bo+b X+ ---+bX", h=c+aX+ - +e¢,X°,

with r,s < n and 7 + s = n. Since ag = boco, it follows from (ii) that p | by

or p | cp. Since p? J ag, the coefficients by and ¢o cannot both be divisible by p,

and we may assume, without loss of generality, that

plbo, pfe. (2.14)
) Sypposg inductively that p dividesrbo, b1,...,bg_1, where 1 < k < r. Then
yo VD ae L usls p e — -y
K = L@ ) (sU ek =bock +bick_1 4+ br_1c1 + breg . »”:f\”
Since p divides each of ay, bock, bl_ck_l, ..., bk_ycy, it follows that p | bk/co7 and

hence, from (2.14), p | bg. 7 TIIE 0 Nevevz

We conclude that p | b,, and 80, since a, = brc,, we have that p | a,, a
contradiction to the assumption (i). Hence f is irreducible. O
S ’ s Lo i LS oo Y
eat 2 ) s > ; g

Remark 2.28

It is clear from Theorem 2.27 that there exist irreducible polynomials in Q[X]
of arbitrarily high degree.

3 Ferdinand Gotthold Max Eisenstein, 1823-1852.

AR
)
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Example 2.29
- X 2

The polynomial X° +2X3 4+ 2X2 - 2X 11 718 imeducible over Q, since 7X° +
14X3 +8X2 —4X +2 satlsﬁna Elsenstems crltenon with p 9.

It is sometimes possible to apply the Eisenstein test after a sultable adjust-
ment:

i 4 S AL
o )\r"“"‘/}" f/yY v Ao ot

Exampie230 IR R s RE

» -
Show that p= AR 39 X
JOX) =250 X80 4 7

is 1rreduc1ble over Q

Solution

The polynomial f does not satisfy the required d conditions. If, however, there

exists a factorisation f = gh with (say) ag 3 and 3h =2, then vt e T

X5 +14X°% 4 8X% — 4X +2 = X F(UX) (x5 (1 150\ { 42 M o0
L 5 )= (W)

is a factorisation of 7X5% 4 14X3 + 8X?

know that this cannot happen.

—— \'L.)v

The next example will eventually prove importay. Prroedt

=4X 42 and from ‘Example 2 29 we
AL aoms NS e WY \,"“ - 2

Example 2.31 ‘ }J‘
L) =Y S A

Show that, if p > 2 is prime, then

i 2
A\)
ez \ e CXN) L "QMM
is arredumble over Q. VN - ~xax
Solution 2 X tx3x 3
Observe that f(X) = (X ~ 1)/(X = 1 g(X) is defined as F(X 4 1), it e B
follows that v w3 B T ~ B
‘d -1 Bt o L
= e § 5V Oas (UAD
o) = (X 117 -0)-F e
e e JEO o
As was observed in the proof of Theorem 1 17 the coefficients - o°
E— > o~ e S
p P P\
1 ) 9 1ty p-l)

A\
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are all divisible by p. Hence g is irreducible, by the Eisenstein criterion.

If T = wv, with Ou, dv < 8f and du + dv = Jf, then
KA

g(X)=u(X + 1)1}()? +1).

The factors u(X + 1) and v(X + 1) are polynbmials in X, of the same deprees

(respectively) as u and v. We thus have a contradlctlon, since g is irru

— s (™ D

N g \:»’ 51 ‘tﬂ

Another device for determining irreducibility over Z (and consequs:
Q) is to map the polynomial onto Z,[X] for some suitably chosen prime m.
Let g = ap + a1 X + -+ + an X" € Z[X], and let p be a prime not ...~ .z
Gy For each ¢ in {0,1,...,n}, let @; denote the residue class a; + (p) i the
field Z, = Z/(p), and write the polynomial @ +a@; X +--- + @, X" s
choice of p ensures that 8§ = n. Suppose that g = uv, with du,dv -/ .
Ou+0v = dg. Then g = uv. If we can show that g is irreducible in Z,, .

we have a contradiction, and we deduce that g is irreducible. The advart e

of transferring the problem from Z[X] to Z,[X] is that Z, is finite. '
verification of irreducibility is a matter of checking a finite number o

N D I Y

Example 2.32

Show that v
g=TX*+10X% - 2X2 44X -5

& 50

is irreducible over Q.

igﬁa» 3, (/L'W’ ?—'T
If we choose p = 3, then, in the notation of the paragraph prec:::«

Solution

example, g o= b, DpremUgmes Ul ) b UN 0
9:X4+X3+X2+X+1, 73'—_
The elements of Z3 may be taken as 0,1, -1, with 1+ 1= —1. WA
‘We show ﬁrst that g has no lmear factor for - =4
T Rper glii=t, Gil)=-1, SO
There remains the p0551b111ty that (in Z3[X])

,\_/3\
' X4+X3+X2+X+lk(X7+aX+b)(X2+cX+

Equatmg coefficients gives ~~ " C,._. S >< b AcX aasly .
— — R \» (\.A_«
X be -
atc = 1, b+ac+d B 5 De X +he
bd = 1, ad+bc =
e =y
C >0 \ \ 7/‘:““” S| )
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Hence either (i) b =d = 1 or (ii) b = d = —1. In case (i) we deduce that
ac = —1, and so @ = %1, ¢ = F1. In either case a + ¢ = 0, and we have a
contradlctxon In case (i) we deduce that ac = 0. If a = 0 then ¢ = 1, and
so 1 = ad + bc = b, a contradiction. Similarly, v, ifc=0 then a = 1, and then
1= ad + bc = d, again a contradiction. A

We have shown that g is irreducible over Zs, and it follow% that g is irre-
ducible over Q. O

Remark 2.33

The choice of the prime p is, of course, crucial. If, in the above example, we
had used p = 2, we would have obtained g = X 4 4+ 1, and in Z[X] this is far
from irreducible, since X4 +1 = (X +1)*. It is important to realise that if our
g is not irreducible then we can draw no conclusion at all.

EXERCISES

2.14. Show that X3 + 2X2 — 3X + 5 is irreducible over Q.
2.15. Show that

S JRATN el
X3 43X 412, X*+2X -6, X°+5X°-10
are irreducible over Q.
o 8 EY LoF > u\9)
2.16. By making suitable transformatlons usé thewm
show that

5X4 -10X3+10X —3, X*+4X3+3X%-2X+4

are irreducible. L/‘7>
5 =2

1
-
2.17. By using the gechmque of Exam /_‘pLeMQ 32 show that i

——_———

y 4x* —2Xx° +X~—o, X ~TX +5

59

~ are irreducible. </{ (/[ ™

3 4 S

<
3 -

A

iy

AR
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Integral Domains and Polynomials

2.1 Euclidean Domains

sl
d to build

» A8 we g
are integral domains of a particular kind, and it helps to deve10p so. -
abstract theory of these domains before applying the ideas to Dolynom;

X An integral domain D is called a euclidean' domain if the\rz‘\is a lals,

§ from D into the set N° of non-negative integers with the pm\er\_apping
g Perty that

In Chapter 3 we shall start our serious study of fields. But first we y B

228
our tgélkit, which involves polynomial rings over fields. These 1
all see,

me of the

0 and, for all ¢ in D and all b in D \ {0}, there exist ¢, 7 in D gycp tha(s-@.)i‘_

* Q_,a,__b,»&l /‘/u t
0 EE =gl and o) 2 B0 . o
e e ]

From the definition it follows that §~*{0} = {0}, for if 6(b) were ¢
would not be possible to find 7 such that §(r) < 6(b).

The most important example is the ring Z, where d(a) is defineq as
where the process, known as the division algorithm, is the famili,, One (whj
we have indeed already used in Chapter 1) of dividing a by b ang obt which

< : - inj
quotient ¢ and a remainder . If b is positive, then there existg g suc hnl;lg a
— it ] at

gb<a<(g+1)b. o

dual to 0 it

and

! Buclid of Alexandria, ¢. 325-265 B.C., is best known for his systemag;
" -geometry, but he also made significant contributions to number theg,
the euclidean algorithm described in the text (applied to the positive

Sation of
R ncluding
mt‘lgers) 7
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Thus 0 < a — gb < b, and so, taking r as a — b, we see that a = gb « » wd
v} < |b]. If b is negative, then there exists q such that

(g+1)b<a<qgbh.

T

Thusb<r=a—gb<0, and so again a = gb + r and | < |b]. We shaii come
across another important example later.

integral domain D is called a principal ideal domain if all of i

are principal. — R W A s : —
=
Theorem 2.1 pﬁ/;’:_@ﬁ

Every euclidean domain is a principal ideal domain.

Proof (b THC-L

Let D be a euclidean domain. The ideal {0} is certainly principal. Let T
non-zero ideal, and let b be a non-zero element of I such that

) ) 2 ASN * el bt
}’Q oz T 4(b) = min {é(z) : zel\0}. st B 33 5050 ?{o,; %
T &) =<

V=

be a

Let a € I. Then there exist g, T such that a = ¢b + r and §(r) < §(h). Hine
T =a—gb € I, we have a ‘contradictionr unless 7 = 0. Thus g = gb, and so
I'= Db = (b), a principal ideal. L
Suppose now that a, b are non-zero members of g principal ideal domain
D, and let {a,b) = {sa+th: s te D} be the ideal generated by a and »  See
Theorem 1.4.) By our assumption that D is a principal ideal domaj» "o
exists d in D such that (a, b) = (d). Since (a) € (d) and (by C (d), we have,
from Theorem 1.5, that d | a and d | b. Since d € {a,b), there exist s, tin D
such that d = sa + tb. If &' | @ and d’ | b, then d’ | sa + tb. That is, d Y

say that d is a greatest common divisor, or a highest common factor.

of a and b. It is effectively unique, for, if (a,b) = (d) = (d*), it foll .
Theorem 1.5 (iii) that d* ~ d.

To summarise, d is the greatest common divisor of ¢ and b (writn 4 g
ged(a, b)) if it has the following properties:
(GCD1) d|a and d | b;

(GCD2) if d' | a and d' | b, then d' | d.
D\ 22

T2 See
If ged(a, b) ~ 1,%say that a and b are coprime, or relatively prix. .
n the case of the domain Z, where the

group of units ig {1,-1}
for example, that (12, 18) = (6) = (-6).





