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]
Theorem 3.3 ,/
Let L : K and M : E be field extensions. Then
[M:L)[L:K]=[M: K].

R e R 17T

“ 3 A P
roof AL e Ll I e
Let {a1,a2,...,a-} be a linearly independent subset of M over L,and let

{b1,b2,...,bs} be a linearly independent subset of L over K. We show that
{ab; - i=1,2,...r, j=1,2,...5} 3.1)
is a linearly independent subset of M over K. For let us suppose that
¥ s
DD Niaib; =0,
i=1 j=1

with A;; € K for all ¢ and j. Rewriting this as

i <ZS:)\U()]>CLZ = 0,
=1 Nj=1

we deduce, since th a; pre linearly mdeEe dent over L, that

7

Z/\”b_o (i=1,2,...,1).

& vis

Then, since the b; are lmearly independent over K, we conclude that A\;; = 0

for all ¢ and j.= '_’_7;\—'_—:‘7 5 = N3yHne ¥ =0
If either of [M : L and [L: K] is mﬁmte then either r or s can be made

arbltrarlly large, and so the set~ (3.1) can be made arbltranly large. Hence

M:K ] is 1nﬁn1te So now suppose tha.t

[]W:L]=T<oo, LL:K]:s<oo,

that {a1,az,...,a,} is a basis of M over L, and that {b;,b,,...,b,} is a basis
of L over K. For. each z in M "M there exist )\1,)\2,,.4,6)1 in L such that z =
/—\},ZZ 1 i@ Also for each A; there exist uﬂ,uzg, o ,pzs in K such that L
{ ZJ lu,Jb> Hence — &%

¥ 5 2= "% pailasb;) .

44 i=1j=1
The set (3.1), being both linearly independent and a spanning set for M over
K, is a basis, and so

\
\

[M:K|=rs=[M:L][L:K].

PRSI

\4
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he following easy consequence is worth recording at this stage.

orollary 3.4

Let K1, Ks,..., K, be fields, and suppose that Kiqy1: K; is an exiension, for
1<i<n—1. Then

—% [Kn e I(l] = [Kn : Kn—l] {KnAl : Kn—Z] PR [KQ : Kl] .

EXERCISES

3.1. Let L: K and M : L be field extensions, and let [M : K] be finite.
Show that

(i) f [M:K]=[L: K], then M = L;
(i) if [M: L] = [M : K], then L = K.

3.2. Let L : K be a field extension such that [L : : K] is a prime number.
Show that there is no subfield E of L such that K C E C L.

3.2 Extensions and Polynomials

e S e
We are familiar with the observation that the equation X2 = 2 cannot be
solved within the rational field, but has the solutions ++/2 in the field R of real

numbers. In fact its solutlons he within a much smaller Reld than R, namely,
P e

S s A =
SN s s )
\ & ‘~/ \};r; {f]‘{a‘lrb\/— abGQ} f‘p-."‘/u"“/,’\ = s
of Q. It is not perhaps quite obvious that this is a ﬁeld but it is easy to verify
the subfield conditions {1.3). If a + bv/2,c + dv2 € Q[\/—] then ?:&:_JJ)
o3 - 4 ‘\“‘»«.,‘ il ¥
(a+6v2) — (c+dv2) = (a— )+ (h—dVZ € QvE), ~F >0
. = S
nd {20 VR N Ve
. (a+bv2)(c—dv2) .
+b0V2)(c+dv2) "l = NG
(a )(C o (c+dv2)(c — dv2) v
: ZINY,
hieke A=/
here _ac—-2bd . be — ad N \f‘
Cre e "t Js
C r o e
ey

\4
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Note that from the irrationality of v/2 it follows that ¢ — 2d* = 0 if and only
ife=d=0.

This is a special case of a general result, which we now proceed to investi-
gate.

We begin with something quite general. Let K be.a subfield of a field L, \
and let S be a subset of L. Let K(S) be the intersection of all the subfields of |\ |
I containing K U S. (There is at least one such subfield, namely L itself.) It \( ¢ } ,[
is clear that K(S) is the smallest subfield containing K U S, and we call it the
subfield of L generated over K by S.If S = {al,ag, an} is finite, we 4

write K(S) as K(al,az, ., Q). A/\ Fin

- — \ %—— <

(5 = N‘&’f e §) o US L2 AN et

Theorem 3.5\ ' 7 ‘ ‘ -

S e\ N
The subfield K(S) of the field L coincides with the set F of all elements of L that dY\ -
can be expressed as quotients of finite linear combinations (with coefficients in ¢ _ - £\
K ) of finite products of elements of S. m A5 st p L o

‘ \ - S e ) E - [ & e

™
D P
d

"3 "
o A

Proof

Denote by P the set of all finite linear combinations of finite products of
elements of S. If p,g € P, then p*gq, pg € P Hence, if z = p/q and & P \;;J g

y = r/s are typlc:ﬁ elements of E “with p, g, T, sin P and q,5 # 0, we see L ’

that = —y = (ps — ar)/(gs) € B, and (provided y # 0) z/y = 33)/(a7) € E- b £

_From 3) “we deduce that E is a subfield of L conta.lnmg K and S, and so

T —— N
K(S) C E. Also, any subfield containing K and S Tiust contam all finite prod- X &
ucts of elements in S, all linear cqmbmatlons of such products, and all quotients =
of such linear combinations. In short, it must contain E. Hence, in particular, b RS O

K(S)2E. ;,;.;fy)\ o, S WGl Sub gl O

Of particular interest is the case where S has just one element a (¢ K).
Then, from Theorem 3.5, we deduce that K () is the set of all quotients of
polynomials in o with coefficients in K. We say that K (o) is a simple ex-
tension of K. The link with polynomials is important, as the next result

shows: N & oy g Golaan o PR T L
& = )\/ g
) SRl
Theorem 3.6 e 5 o , Ne? Q"?‘

Let L be a field, let K be a subfield and let @ € L. Then either

(i) K (o) is isomorphic to K (X), the field of all rational forms with coefficients
in K;or 7\\ ) \
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(ii) there exists a unique monic irreducible polynomial m in K [X] with the
property that, for all f in K[X],

(a) f(@)=0if and only if m | f;

(b) the field K(a) coincides with Kfa], the ring of all polynomials in a
with coefficients in K; and

(c¢) [Kla]: K] = om.

\ew) = ¥ o E A
Proof P o h
® 3
\) Suppose first that there is no non-zero polynomial f in K[X such t‘;m flo) =
’ ‘9_‘ (This means in particular that o ¢ K, since in that case we may take f as
¥~ X — .) Then there is a mapping ¢ : K(X) - K (oz) given by - -

v L P = esla),

o S L
<; - (for we are assuming that g(aﬂ) 0 only if g is the zero polynomml\ It is routine
to verify that ¢ is a honmomorphism, and it clearly maps outo K (a). To see
that it is well defined and one-to-one, suppose that f,g,p,¢ are polvnomials,
with g,q # 0. Then _—

o(f/9) = elp/a) == fla)g(a) —p(a)g(c) =0 in L
Py <> fg—pg=0 in K[X]
,,,,,, v)_) &> flg=p/g m K(X).

Now suppose that there does exist a non-zero polynomial g such that g(a) =
" 0. Indeed, let us suppose that g is a polynomial with least degree having this
property. If a is the leadlng coefficient of g, then g/a is a monic polynornlal
Denote g/a by m. Certainly m(a) = 0. Sm—————
It s clear that fla) =0if m | f. Conversely, suppose that f(a) = 0. Then,
by Theorem 2.12, f = gm + r, where Or < dm. Now

N~ 2
el 0= fla) = gla)ym(e) + r(a) =0+ r(a) = rin:
P LF A A
- o 4 Since Jr < Om, this grveb a contradiction unless r is the zero polynowial. Hence
N J f = qm, and so m | _f ,,,,,,,,, 9 P 2 T —

Q« < A uwae ~Same properties. Then m(a) = m/(e) /= 0 and so m | m’ and m’ | m. Since
“n

both polynomials are monic, we mnclude that m’ = m.

—W
P .| Toshow that m is irreducible, suppose, for a contradiction. that there exist
G N we’ rpolynomlals p and g suc that nq = m, with Op,dq < dm ()(ﬂf gﬂ) =
AN & .9/ m(a) =0, and so cither p(a) = 0 or g(a) = 0. This is imposgible -+ both p
r . 4«

and q are of smaller degree than m.

A\
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S

Next, consider a typical element f(a)/g(e) in K(a), where g(a) # 0. Then
m dow_t_dlwde 9, and it follows, since ml has no divisors other than itself
and ! nd 1, that the g{ggtest common divisor of g f g and m is 1. Hence, by Theorem

_2 15 there exist polynomials a, b such that ag 4+ bm = 1, and so, substituting
« for X, we have a(a)g(e) = 1. Thus

A oycady ey My =y
L ary=y N 5

255 R D88 - fjate) e Klal.

P

@Fmally, suppose that dm = n, and let p(a) € K[a] = K(a), where p is a
polynomial. Then p= gm+, where Or < 8m = n. It follows that p(e) = (),
and so there exist co, L Cnon. (the cgefﬁments of r, some of Whlch may, of
course, be zero) in K such that p(a =c¢+ca+ -+ cp_10™ . Hence
{1,a,...,a" 1} isa spanﬁﬁxg set for Ko

Moreover, the set {1,c,...,a" 1} is linearly independent over K, for if
elements ag, ai, - ..,an_1 of K are such that ap + a1 + -+ + an_1a" + =0,

then ap = a3 = --- = an_1 = 0, since otherwise we would have a non-zero
polynomial p = ag +a; X + - + an_1 X" ! of degree at most n — 1 such that
p(a) = 0. Thus {1,0,...,a" 1} is a basis of K(«) over K, and so [K(a) : K] =
n. ’ O

The polynomial m defined above is called thm polynomial pf
the element o.

. Remark 3.7

If m’ is another monic polynomial of degree n such that m’(a) = 0, thenm | m’
implies that m = m’. Thus, if we know that [K[o] : K] = n and if we find
a monic polynomial g of degree n such that g(a) = 0, then g must be the
minimum polynomial of a.

From the proof of Theorem 3.6 we see that every f(a)/g(a) in K(a) is
expressible as a linear combination of 1, ¢, ... ,o ™1 with coefficients in K. To
find this expression for a given element of K (), we can follow the procedure
in the proof of the theorem, but there is usually a simpler way.

Example 3.8 ‘.p()).x 0273 Yo
”——‘_“-ﬁ\ﬁ
Let o be an element of C w1th minimum polynomial X2 + X 41 over Q. Show

that a? — 1 # 0, and express the element (o® +1)/(a? — 1) of Q(a) in the form
a + ba, where a,b € Q.

A\
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. o - e
Solution PR o LS
Since @® + ar + 1 =0, we immediately have that o> —1 = —a — 2 # 0. Hence
a2+1_ —a o« -1 2 { “\,,ff‘,‘,
az—l_—a—z_a—l.—2d_‘ a+2’ e Sy A
Dividing X2 + X +1 by X + 2 gives - eex
¢ > @ e
X2+ X +1=(X+2)(X~1)+3,
X 1 al oA \ A .
and so (o + 2)(a — 1) = —3. Hence o
[xXov) - =3 1 1
P =—Z(a—1
o o arz - 3@l
and SOy )
ERPSTR o | 2 1
=1+ 2(a—1) = (1 +2a).
oy = itgle—1)=2(1+2q)
[

Example 3.9

If K is the field Q and L the field C, the minimum polynomial of i1/3 is X2 4 3.
Then

Qliv3] = {a+biv3 : a,be Q}.

The multiplicative inverse of a non-zero element a + biv/3 is @’ + b4 1/ 3 where

r_ _a B —-b ) ;’x“v:‘
a? +3b2” a® + 362
LR Y% AFEVES
Example 3.10 o % "

It might seem that the subfield Q(v/2,v/3) is not a simple extension. bt in
fact it coincides with the visibly simple extension Q(v/2 + v/3). It s clear
LhaL\f+\/—6Q(\/2\/_) andSOQ(\/v“}"\/_)CQ(\/Z\/-Z . sl
since (v/3 + +/2) \/ﬁéx/#?):l it follows that v3 — v2 = (f+f 1 “
Q2 ++/3), and i then follows easily that v2,v/3 € Q(v/2 + v/3). Hence
Q2 V3) COV2 1 V)

“We can write Q(v/2,v/3) as (Q[v2])[V3]. The set {1,v2} is clearly a ba-

A sis for Q[/2] over Q. Since v3 ¢ Q[v/2] (see Exercise 2.4), we nmst have

[Q(\/Z \/‘i) Q[\/_]] > 2. On the other hand, from the trivial observation that
(v/3)? =3 = 0, we conclude that X? — 3 is the minimum polynomint * 7 over
QN"] and that {1,v/3} is a basis. Then, from Theorem 3.3, wo edizue that
1 \/5 M%IS for Q(v/2,V3) over Q.

B b S S N B
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-
The minimum polynomial of v/2 + v/3 is of degree 4. From the information

that T ae SR vy +“4</£/‘

59

(V2+V3)2=5+2V6, (V2+3)* =49+ 20v6

we deduce that the minimum polynomial is X 4 -10Xx2 —|— 1 Z/ b . 7 f o
(o Ok Lt o e o Sires
o If o has a minimum polynomial over K, we say that o is algebraic over K (c:, o (Q_)
 and that K|a] (= K(e)) is a simple algebraic extension of K. A complex ,?@ 2
g i O O .

number that is algebraic over Q i is, called an algebraic number. If K(a) is@)
1somorph1c to the field K(X) of rational functions, we say that « is transcen- o a) achr ¢ ey,
dental over K and that K(a) is a simple transcendental extension of

S K. A transcendental number o isa complex number that is transcendental \§ \g
" over Q.

(p’ N
Examples 3.9 and 3.10 feature simple algebraic extensions and elements = »¢*(i= o

iv/3, V2, V/3, V2 + /3, all of which are algebraic numbers. So far we have not e
demonstrated that a simple transcendental extension exists. Well, yes, it does: ‘
if we take L = K(X), the field of rational forms over X, then it is immediate € (¥X)z R /[x 3

from the definitions that the element X is transcendental over K. That, you Kex)
might legitimately feel, is something of a technical knock-out, and leads to the AP T
more interesting question: do there exist transcendental complex numbers? The - e
answer is yes, and the proof, which involves some knowledge of infinite cardinal =Ve- g

numbers, is interesting. First, we make a fairly easy observation:
)
Theorem 3.11

Let K(a) be a simple transcendental extension of a field K. Then the degree
of K(a) over K is infinite. an . .
( ) ﬁ ‘<(V<\\ \’\',X: \\/\%\v\\%f
®,, L\ ;
T W e Lise o A, R R
Proof G W s aoa—a\xﬂ% GaxX * A XK =

The elements 1,, 02, ... are linearly independent over K. O

e T

Sy L lwy
s = 7 (S
v

An extension L of K is said to be an algebraic extension 1f every element
of L is algebralc over K. Otherwise L is a transcendental e extension.

T———————
Ritio
s oy €
R/ P
Y Theorem 3.12 N

Every finite extension is algebraic.

A1
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Proof

Let L be a finite extension of K, and suppose, for a contradiction, that L con-
tains an element o that is transcendental over K. Then the elemeu - |, b(,\o( A

are linearly independent over K, and so [ : K ] cannot be finite. I:l
wasts LS g a0 (AR ’ &

Theorem 313 | Lz wn

=

Let L K and JM L be field extensions, and let & € M. If « is algebraic over

K, “then it is also algebraic over L.

% Proof 0\ ””””

Since « is algebraic over K, there exists a non-zero polynomlal fin X
that fla)= 0 Since f is also in L[X], we deduce that o is algebraic o ve

—

DX\ xem st
Remark 3.14 T e
JP“D( 7 \‘.

The minimum polynomial of o over L may of course be of smaller degree than
the minimum polynomial over K. In Example 3.10 we saw that the mivis o o
polynomial of v/2 + /3 over Qis X* —10X? + 1. The minimum PO
over Q[v/2] is X2 - 2\/2X — 1. See Exercise 2.4 for 1ts minimum polyncial
over Q [\/-] K s (Vo) = 1 e

e hasis (\, UT ) e e w2t

& D

Theorem 3.15 g oS i

Let L be an extension of a field K, and let A(L) be the set of all element:
L that are algebraic over K. Then A(L) is a subfield of L.

S Pl 2

\R

e o

Proof
Suppose that «, 8 € A(L). Then
a—peKa,f)= (K[aJ)[B]\\

By Theorem 3.13, 3 is algebraic over Ko}, and so bMy] C K and
[(K[e])[8) : K[a]] are e finite. From Theorem 3.6 it follows that TA{ey, Bl ¥
is finite, and so, by Theorem 312 a -4 is alggbralc aover K. Awn Yendecal

2y &

=argument shows that a/3 € A (L) for all @ and 3 (# 0) in JA(L). 1 '
,~”’\)\“\?¥""\‘v-”v"‘>ﬁ axg |

Sup

If we take K as ﬂle field @ of »r;ational numbers and L as the o0
complex numbers, then A(K) is the field A of algebraic numbers.

L (R

AR
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Theorem 3.16 >< f N —2 <

The field A of algebraic numbers is countable. CQ w\ = h i
a‘{

. ‘ 3 W,
Wa e O - 2P S o
The proof depends on some knowledge of the arithmetic of infinite cardinal
numbers. It is known (see [6]) that Q is countable. To put it in the standard
notation for cardinal numbers, |@| = Ro- Since Q C A, we know that |A| > Ro.
Now, the number of monic polynomials of degree n with coefficients in Q
is X = Ro. Each such polynomial has at most n distinct roots in C, and so
the number of roots of monic polynomials of degree n is at most nRg = No-
Hence the number of roots of monic polynomials of all possible degrees is at
most Ro.Ro = Ro. Thus |A| < R, and the result follows. 0

Theorem 3.17 ><

Transcendental numbers exist.

Proof

Proof

1t is known (sce [6]) that |R] = |C] = 2% > Ro. It follows that C \ A, the set
of transcendental numbers, is non-empty. Indeed, since |C\ A| = %o > |A|, we
can say that “most” complex numbers are transcendental. O

Remark 3.18‘ X ‘

This argument, due to Cantor?, was extraordinary, in that it demonstrated
the existence of transcendental numbers without producing a single example of
such a number! Not everyone (see [2]) was convinced by a “non-constructive”
argument of this type. (See [2].) As early as 1844, however, Liouville? had
demonstrated that 3 no; 10~™ is transcendental. Proving that an interesting
and important number is transcendental is, of course, harder. Hermite 3 proved
in 1873 that e is transcendental, and in 1882 Lindemann 4 proved the tran-
scendentality of 7. (See [1].)

! Georg Ferdinand Ludwig Philipp Cantor, 1845-1918.
2 Joseph Liouville, 1809-1882.

3 Charles Hermite, 1822-1901.

4 Carl Louis Ferdinand von Lindemanz, 1852-1939.

L4
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+

Theorem 3.19

A\
l}/OLet: L be an extension of F, and let the elements aj,a2,... ¥ i L have
minimum polynomials my, M2, ..., Mn , respectively, over F. Thin
[F(a,02,..-,0n) : F] < 0mi10ma ... 0mn. (3.2)
//// v»»"\\"> ¢ N
"\ Proof -
\ | \% < \ 2 e\ o= }>
S} The proof is by induction on n, it being clear that [F(a) : F} = & =eppose
/ inductively that
\ Py
St [F(a{, 0, an_y): F] < 0my0ms... 6mn_1- . .

We know that m,(cs) = 0. The element o, is certainly Prpie over
F(al,aQ,...an__l), and its minimum polynomial over that fivhi it have
degree not greater than dmy,. Thus

[Fai, 02,1 0n): F(og,az,...0n-1)) g‘\'k{)’mn \3

- \ or 7

and the required result follows from Theorem 3.3. [

Remark 3.20

We cannot assert equality in the formula (3.2). For example,

@(+2): Q] = [Q(v3) : Q| = [Q(V6) : Q] =2,
but [Q(v/2,v3,V6) : Q] = 4.

Example 3.21

Show that an extension L of a field K is finite if and only if, fer < ‘here
exist ay,qz, .. .,0n, algebraic over K, such that L = K (o, a2 .

Solution

Theorem 3.19 gives half of this result. Suppose now that [L , and
that {aq, a2, --» an} is a basis for L over K. The elements o, »r *" ~hraic,
by Theorem 3.12. Then L consists of linear combinations (with ecs» rents in
K) of a3, @, . ..,0n, but in fact contains (and is thus equal & mingly
larger set K (o, Q2,--->Qn)- ) [

A\
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EXERCISES

3.3.

3.4.

3.5.

3.6.

3.8.

3.9.

3.10.

3.11.

3.12.

Show that, if n is not a perfect square, the field Q[/n] is isomorphic .

to the field :
a b .
Kf{(nb a) Fa,be Q).

‘Why does this fail if n is f;m perfect square?

For arbitrary a, b in Q, find the minimum polynomial of a + b2
over QQ.

Let L : K be a field extension such that [L : K] = 2. -Show that

L = K(), where $ is an arbitrarily chosen element of L \ K and
has a minimum polynomial of degree 2.

Let « be a root in C of the polynomial X2 + 2X + 5. Express the

element :

A +a—2
a? -3

of Q(c) as a linear combination of the basis {1, a}.

. Show that f(X) = X3+ X +1 is irreducible over Q. Let a be aroot

of f in C. Express

1 1
— and
a a+ 2

as linear combinations of {1, a, a?}.

In the context of Example 3.10,
(i) show that v/3 ¢ Q[v2]; ‘
(i1) find the minimum polynomial of V2 + /3 over Q[v3].

Show that Q(v/2, v5) = Q[v/2 + v/5]. Determine the minimum poly-
nomial of ﬂ.—k V5

(i) over Q (ii}) over Q[v2}; (iif) .over Q[V5].

Determine the minimum polynomial over Q for each of

V3 .
1+V3, 7 V3+VE, 1+i)V3.

Determine the minimum polynomial of /1 + V2 over Q. What &
its minimum polynomial over Q[\/ﬁ}? '

The element 1 + v/2 + v/3 + V6 belongs to the field Q(v/2, V2!
Compute its multiplicative inverse.

@

\4
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3.13. Let L : K be a field extension, and let g € K[X]. Show that

N)

\

(i) if g is irreducible over L, then it is irreducible over K;
(ii) if g factorises over K then it factorises over L.
3.14. Show that there exist real transcendental numbers.

3.15. Let a, B be transcendental numbers. Decide whether the following
conclusions are true or false:

(1) Qo) = QB); (i) ap is transcendental;
(i) o” is transcendental; (iv) o2 is transcendental.

3.16. (i) Show, by induction on n, that the determinant

A0 0 0 ... g |
-1 A 0 0 Gn
| 0 -1 X 0 ... gn2
Au=]0 0 -1 2 Gno3
0 0 0 ... -1 Ata

is equal t0 gn + g3 A+ + @A £ A7,
(ii) Let a be algebraic over Q, with minimum polynomial
mX)=X"4+ap, 1 X" 4 a1 X +ag.

Let T be a linear mapping of Qo] onto itself, defined on the
basis B = {1,e,...,a" !} by

Ta(e?) =% (=0,1,...,n—1).

Write down the matrix A of T, relative to the bssis B, and
show that the determinant (the characteristic poiynomial of A)
X1, — Al is equal to m(X).

3.3 Polynomials and Extensions

In the last section, called Extensicns and Polynomials, the main result was
that every simple algebraic extension K(a) within » field ¢ i weworiated with
a polynomial, the minimum pclynomial of a. We required . 1 <x:wf within a
field L. By changing the order of the words in the title we - g+ the question:
given a field K and a monic irreducible polynomial m with coefficients in K, can

A\




image15.jpeg
@
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we create a field, an extension of K, containing an element o whose minimum
polynomial is m?

Let K be a field, and let m € K[X] be irreducible and monic. Let L =
K[X]/{m). Then L is a field, by Theorem 2.4. By Theorem 2.19, the mapping
a — a-+ (m) is a monomorphism from K into L, and so L is.an extension of K.
Tiet & = X + (m). Then, for each polynomial f=ap+a X +aX?+-+an X"
in K[X],

f(a):ao+a1a+--~+ana"

=ag+ 01 (X '+ (m)) + a2 (X + (m))@+ ctan(X +}(ﬂ}}f)»19 A -

= ag+ a1 (X + (m)) +aa (X7 +(m)) +--+ an (X" (m))
= (a0 + m X +a2X? 4o+ an X™) +{(m)
=f+(m),

and so f(a) = 0+ (m) if and only ifm | f. Thusmis the minimum polynomial
of o. We have proved the following result:

¢

Theorem 3.22

Let K be a field and let m be a monic irreducible polynomial with coefficients
in K. Then I = K[X]/{(m) is a simple algebraic extension K[a] of K, and
o = X + {m) has minimum polynomial m over K.

The field L in the theorem is in effect unique:

.

Theorem 3.23 ’ ow ¥ Rt

NS <

Let K, K’ be fields, and let ¢ : K — K’ be an isomorphism with canonical

extension ¢ : K[X] — K'[X]. Let f = anX"™ + an1 X™ V4 -+ +ap be an
o, - s . B . ~

o 1r_r/e_d3_cﬂgle polynomial of degree n with coefficients in K, and let f' = @(f) =

" f;rfcp(an)X" +olan )X 4+ (ao). Let L be an extension of K containing

’ a oot a of f, and let L' be an extension of K’ containing a root o’ of f'. Then

there is an isomorphism % from K{a] onto K 'lo’], an extension of ¢.
e

oo o
Apn X A\——p(mk\ - A X,

n 5 1
an K=~ /’{M ’<w T & as A Xa)
The field K[a] consists of polynomials bo + bia + -+ + bp_10™ ), with the

obvious addition, and where multiplication is carried out using the equation

Proof

1
o = f—(a,,#la"_l +---4ag)-

Qn

4
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The mapping 1 is defined by
Qﬁ(bo + bla +---+ bn—lan_l) = <P(bo) + (P(bl)a/ +--- ‘,mi-h?; }‘)(al)n—-l -

In a more compact notation, we have-that, for. each polynomial » in K [X] with
du < n, )

P(u(a) = (p(w) (o).
It is clear that v is one—one and onto, and that it extends the isomorphism
0: K— K.
Let u,v € K[X], where Ou,0v < n — 1. Then it is clear that

w(u(a) + v(a)) = w(u(a)) + w(v(a)) .

The corresponding equality for multiplication is less clear. We multinly u(a)
and v() and use the minimum polynomial to reduce the answer ter w{a), say,

where 0w < n—1. Precisely, we use the division algorithm to write uv = gm+w,
G = o
where dw < n. Hence

B(ule)(@) = p(w(e) = ($w) (). (3:3)

The isomorphism ¢ assures us that the division algorithm in K'[X1 gives

ks

P(u)@(v) = ¢(q)p(m) + ¢(w) . (34)
Hence
P(u(@))p(v(@)) = (@(w) () (4(v)) (o)
= (p(w)@(v)) ()
= (P(@)@p(m) + p(w)) (o) (from (3.4))
(@(@) (@) (@(m)) (@) + (p(w))(a')
= (p(w))(e/) (since (¢(m))(a’)—= O}
Comparing this with (3.3) gives the required result. ]
1t is worth recording as a corollary the result we obtain when 2 A7 are

the same field:

Corollary 3.24

Let K be a field, and let  be an irreducible polynomial with coetfivients in K.
If L, L’ are extensions of K containing roots a, & of f, vesys: - “hen there
is an isomorphisin from Ka] onto K{a'] which fixes every «icos '

A%
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Since the idea will occur quite frequently as the theory develops, we shall apply
the term K-isomorphism to an isomorphism « from L onto L' with the

property that a(zx) = z for every element of K. S' T X D < .
Py A\ -V
Sz ‘\‘\\"

' % =N s .
SCm @ X et BN MAASAR)
Example 3.25 L= =Y |

s & (X e Xt ¥ <"‘t““\‘3
If K =R and m = X?+1, the field L = K[X]/{X?+1) contains an element
§= X + (X2 +1) such that 62 =—1. The polynomial X 2 41, irreducible over
R, factorises into (X +8)(X — §) in the field L. Every element of L is uniquely

of the form a -+ b4, and so L is none other than the field C of complex numbers.

Remark 3.26

* By the fundamental theorem of algebra (see [8]) every polynomial with co-
- officients in C factorises into linear factors. In particular, if m is irreducible
in Q[X], then m factorises completely in CIX]. If we know these factors, it
is therefore easier and more natural to deal, for example, with the subfield
Qiv3] = {a+ biv3 : a,b € Q} of C than with Q[X]/(X? 4 3). The two fields
are, of course, isomorphic to each other.
If, however, we are dealing, say, with extensions of Z,, then we are in.effect
obliged to carry out the more abstract procedure, as the next example shows.

Xc’f -X =} } C’/}‘v :’< A A

QII)\ Q\"} - pla ™
A7

The polynomial m = X 2 L X 4 1 is irreducible over Z,, for any proper factor
would have to be either X —0 or X — 1, and neither 0 nor 1 is a root of m. We
form the field L = Zo[X]/{m). It has 4 elements, namely,

Example 3.27

0+ (m), 1+{m), X+(m), 1+ X +(m),

more conveniently written as 0, 1, a and 1 + ¢, where o> + o +1 = 0. The:
addition in L is given by

+ 0 1 a 14+« .
0 0 « 14+ a
1 1 0 1+a «
« o 14+ o 0 1
l+al|l+a « 1 0

AR
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and the multiplication by

. 0 1 o 1+«

0 (0 0 0 0

1 0 1 o 1+a .

@ |0 a t+o 1 X X
14a|0 14a 1 a Yok g o
Ve Xy (V> = \%?;_0/{}-\—,(‘ T &

~ Example 3.28 .
j\// Show that the mapping ¢ : Qi + v2] - Q[X]/(X* — 2X2 +9), defined 's.‘ry\\\
k % p@)=a+(X*-2X*+9) (c€Q), ¢i+V2)= X+(X4 2X2+9)

- g g
R is an 1501‘;1/0;‘;&15111 Determine (3), ©(v/2) and ¢(iv/2 ) @C ) E @
p— " f;\/ s f‘/ .Z“ ro .
,3(3 Solution 2 n/of ‘ N - Gw (f vz
VN . !\ ™~ - i - ’
It is clear that [Q[i + v2] : Q] = 4. Since s e ;, < (Al Vo L sty
(i+V2)?2=1+2V2 and (i+v2)* = —7+4zf

N
T o

the minimum polynomial of 7 + V2 over Q'is X4 — 2X2 + )9 The umqw 1R
¥ "y

theorem (Theorem 3.23) implies that ¢ is an isorficrphism. = ®
Let ag,...,a3 € Q. and observe that \ avbiy ¢ 3 A ]

a0+ a1(i +V2) +aa(i+ V22 +as(i +v2)? L\ Ve
= ag + a1 (i + V2) + ax(1 + 2iV2) + a3(5i — V2)
Z et rle = (ag 4- 02) + (a1 + 5az)i + (a1 — a3)V2 + (2a2)iv2.

\
- s Since {1,4,v2,iv/2} is linearly independent over Q, this equals ¢ if and smh,fi!;,\
\ - ag+az=0,a1+5a3=1,a1-a3=0,0a2=0, —
o~ 7 . -,

~N 2

/
\&27 7 2 thatis, if and only if aj = a3 = 1/6 and ap = ag = 0. Thus |

|

L %((HI) (i +V2)?) ¥ |

lﬁ\w\;\e\? and so ) 0) Ko <™ ‘”"““M/\y\*( e l\
PR )= 6(X+ X+ (X -2 +9). |
N Dﬁi&y In a similar way we can deduce that \

¢(\/_):~’SX X34 (x*—2x%4+9),

eliv2) = ( 1+ X%+ (X* - 2X2 + 9)

]

X Q)(‘A, 1}(‘\ —‘*-(\) _-\jx A QX“«-‘*X‘(‘.‘“:?\';)

ToX {M" .,.Ft;;g “”“0\4{,\ ¥ ex —a\’(""’%)

3 . f" =
WY SN Y B A . oty

& e
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3. Field Extensions 69

EXERCISES

3.17. Let K be a field of characteristic 0, and suppose that X4 —16X2+4
is irreducible over K. Let a be the element X + (X* — 16X2 + 4)
in the field L = K[X]/(X* — 16X? + 4). Determine the minimum
polynomials of o, a® — 14a, o® — 18a.

3.i8. Show that the polynomial X3 + X + 1 is irreducible over Zy =
{0,1}, and let o be the element X + (X3 4+ X + 1) in the field
K =Zy[X]/(X® + X +1). List the 8 elements of K, and show that
K\ {0} is a cyclic group of order 7, generated by a.

|
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Fie/d Extensions

3.1 The Degree of an Extension

A L Lo

In this section it is necessary to have some knowledge of the basic concepts of
lineaT algéﬁra including linear mdependence spanmng sets, bases and dimen-
sion. See, for example, [3]. Sa as

If K, L are fields and ¢ : K — L is a monomorphism, we say that L is an
extension of K, and, we, sometimes fipd it useful to write “L : K is a (field)
extensmn” As we have seen this is not essentlally different from saying that K
is a subfield of L, since we may always identify K with its image @(K). Then
L can be regarded as a vector space ovemorspa—ﬁgms

(V1) (c+y)+z=x+(y+2) (z,y,z€L)
(V2) z+y=y+z (z,y € L),

(V3) there exists 0 in L such that z +0 =1 (z € L),

(V4) for all z in L there exists —z in L such that z + (—z) =0,
(V5) a(z+y) =az+ay (a€K, z,y€ L),

(V6) (a+bjz=ax+bx (a,beK, z€ L),

(V7) (ab)z =a(bz) (a,b€ K, z€L),

(V8) lx=z (z€L) s

are all consequences of the field axioms for L. Hence there exists a basis of L
over K. Different bases have the same cardinality, and there is a well-defined

T

\i

-

K Sub '_?,?

o€ 7

[N
) i

Ces
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Yals S 7 L o Ceps s His
dimension of I, equal to the cardinality of an arbitrarily chosen basis. The
term used in field theory for this dimension is the degree of L over & . or the

degree of the extension L : K; and we denote it by [L : K]. We =ay that
L is a finite extension of K if [L K] is ﬁmte otherwise L is s infinite
extension. 2 falp 1« '

Example 3.1

The field R of real numbers is an infinite extension of @, since any firiiie exten-
sion of Q is countable and R is not. (See [6] for information on infinite cardinal

numbers. ) We shall return t6 this issue later in the chapter when transcendental
numbers make their appearance. By contrast, the field C of complex nunibers
is a finite extension of R, w1th basis {1 z} since every _complex number has a
__unique expression as s al + bi , with a b = R The basis is, of course, not unique:
for exéir?ff)lémm;:an wri ewa + bi as —(a +0)(1414) + (a— b)(1 - +)..and so
{1+14,1—i} is a basis. However, every basis has exactly two elements and
[C:R]=2.

oA

Theorem 3.2

Let L: K bea ﬁeld extens;on Then L = K if and only if [[ K ] =

) Q,.f e {) ak PSR
Proof = sl R L 12 = g
K27 N= S X o L
This is a standard property of ﬁmte dimensional vector spaces, but for com-7
X A p as—=-

pleteness we prove it here.
Suppose first that L = K. Then {l} is a basis for L over K, siuce every

“““element z of L is expressible as xl _with z in K. Thus [L: K] =1.

- Conversely, suppose, that [L K] =1, and that {z}, where z # 0, is a bosis

of L over K. Thus, in ]\parm}gﬂar there exists a in K such that i = ur )
z=1/a€ K. For every y i in L there exists b in K such that y= fn = b ‘a.
" "Thus YyE K. We have shown that L = K o

Suppose now that we have field extensions L : K and M : L. That is, there
are monomorphisms a : K - L, 8 : L > M. Then Boa : K — M 1sa
monomorphism, and so M is an extension of K. With these defiritions we uow
have the following theorem, in which the equality is intended to iuhde the
information that if either of {M : L] and [L : K] is infinite then so1s ;M . A].

We shall make the usual identifications, regarding K as a subfield - T anT
as a subfield of M.
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