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mple 4.4
oo
A, B be distinct points on the plane. Construct a square on AB.
ution
D C
2T\ s v e " i 7 oy

I\Cpl, Sb}e a circl% with Sel}tre A passing through B, and let Ky be a circle
1 centre B passing thr\o\qgﬂ}rl*A. By Example 4.1 we can draw a line though
erpendicular to AB. meeting K; in D, and a line through B perpendicular
\B, meeting X5 in C. Then ABCD is the required square. O

o

mple 4.5 [ -

S

M e pAS L
L be a line and A a point not on L. Construct a line through A parallel to

i sl
"JtVIOﬂ v s )

p a perpendicular from A on to the line L, meeting L at the point B. Then
v the perpendicular to the line AB at the point A. O

These examples are by way of preliminaries to the next, more substantial.
nple.

mple 4.6

yray -

y i

struct a square equal in area to a given rectangle.

‘j g:\

-

1tion — PR AT Soa /} SM5
‘uppose that ADD < AB. Draw a circle with centre /i passing through D,
ting the line segment AB in E. Let M be the Iilimt of AB {located 1‘1’§ipg
construction in Example 4.1), and draw a circle K with AB as diameter.

n Example 4.2, draw the line through E perpendicular to AR, meeting the

A\
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circle K in F. The angle AFB is a right a;nglé, and the trimma\s A (R and

AEF imilar.
are similar. Hence AE AF

verre ey AF  AB’

and so AF? = AE.AB = AD.AB. The square constructed on .::

4.4) has the same area as the rectangle' ABCD.

X F
o /WQ
»
st ,
’:\/“' D C
i =
. WY - AC NS
v
A E M B

The classic challenge that intrigued mathematicians for o
this:

\/ e squaring the circle: to construct, using ruler and compas+
i equal in area to a given circle.

The problem is easily understood, and over many centuri
professional mathematicians and enthusiastic amateurs. No -
found. For a history of the problem, see [10].

Other classical challenges were

o the duplication of the cube: to construct a cube doubi
a given cube;

e the trisection of the angle: given an angle 6, to constru: -

~ EXERCISES

.

4.1. Show how to construct a square equal ix% area f
gram.

4.2. Describe a ruler and compasses construction for
angle. ‘g\

\ I
~> \ Qg 22\

4.2 An Algebraic Approach

A cartesian coordinate system in the plane depends on

3y

aainple

[
i

i was

Wuare
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(i) specifying two axes at right angles to each other, meeting at a point O, the
origin;

7(11) choosing a point I, distinct from O, on one of the axes, and giving it
coordinates (1,0).

Let By be a set of points in the plane. There are two permitted operatlons on

thepomtsofffgd M o Lo KD u.«[p Y

[~ 2

(1) (Ruler) through any two points of By, draw a streught line;

(2) (bompasses) draw a circle whose centre is a pomt in BO, and whose radius ™

is the distance between two points in Bp.

Any point which is an intersection of two lines, or two circles, or a line and
a circle, obtained by means of the operations (1) and (2), is said to be con-
structed from By in one >tep Denote the set of such points by C(By), and

e e

let By = Bo U C(Bo) “We can consinue the process, defining
}Rn =Bn,,1 UC(BnAl) (’I'I,Z ],2,3,...). (4])

A point is said to be constructible from By if it belongs to B, for some n.
A point that is constructible from {O, I'} is said to be constructible.
We examine Example 4.1 from this standpoint.

P @ ©

Example 4.7

To construct the midpoint of OF from the set By = {O, I}, we carry out the
following steps. o @

(1) Join O and I. @ . .
(2) Draw a circle with centre O, passing through I. -
(3) Draw a circle with centre I, passing through 0.

(4) Mark the points P, @ in which the circles intersect. Thus

B, ={0,1,P,Q}.

(5) Join P and Q. 4
(6) Mark the point M; in which QI and PQ meet. Thus

By = {D,1.P,Q,M},

and so the point M iz constructible (from {0, I P
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This is still very geometrlcal The connection with algebve cach we
associate each B; with the subfield of R generated by the cavdenate he
points in B;. Let us look again at Example 4.7. As we saw fn bW eowen | 15,
the field Ko generated by By = {(0, 0),(1,0)} is Q. The circles i nd
2? +y* = 2z described in Steps (3) and {(4) intersect in (1/2, 30
the field K generated by By = {(0,0), (1,0), (1/2,£v3/2)} is U3 ) ly,
M is the point (1/2,0), and so the field K, generated by  (“sa\s &=

By = {(0,0),(1,0), (1, +3v3), <2,o>} e

is still Q[\/_ ]. It is no accident that [K;, Q=2:. fo—" " /

m— —_—— ’ s/
Theorem 4.8 XS [\,
Let P be a constructible point, belonging (in the notation of (4.1%7 i 7. ~here
By = {(0,0),(1,0)}. For n = 0,1 , let K, be the field geucrawu woox Q
by B,. Then [K Q] is a power of .‘Z

9 -2 4 Vs Rae* /’ e

Proof L X = Xy e

It is clear that [Kp : Q] = 1 = 20, We suppose mductlvelx that {f \A @l = _"

for some k > 0. We require to show that [K,, : K,, ] is a powu Uk s

New points in B, are obtained by
F " V)-“),rajxmy}g

(1) the intersection of two lines; or

Doy wyas,

(2) the intersection of a line and a circle; or
i (3) the intersection of two circles.

Case (1) is the easiest. Suppose that we have lines AB and € D where
A= (al,ag) B = (bl,bg) C = (61,62) D = (dl,dz) an . '.EFLSL

coordinates are in K, 1. The equations of the hnes are
(y=b)(ar —b1) = (z —bi)(aa —ba), (y—d2)(cy —d) ="

and the coordinates of their intersection are obtained by sulv. two
simultaneous linear equations. The details are unimportant. v
vation is that the solution process involves only rational opeia s o

subtraction, multiplication and division), and so takes place ek a: vty he
field K,,_;. The coordinates of the intersection of AB and ¢ i
field K,,_;.

For Case (2),. suppose that we have a line AB intersect ‘th

centre C and radius PQ, where P, ) are points with coor.

W
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Taking the coordinates of A, B and C as in the previous paragraph, with all
coordinates in Kn_i, we must solve the equations

B (- b)e—b) = @ b)@ =),
\?V’; " 94} Ny )y es (11? _ 61)2 A (y _ 02)2 — 7"2, R
¢ : g
where 72 € Kn_1. We have to solve two simultaneous equations, one linear and
one quadratic, with coefficients in K,_1. Again the details are unimportant,
but the standard method of doing this is to express ¥ in terms of z using the
linear equation, and then to substitute in the equation of the circle, obtaining
a quadratic equation in z, with coefficients in Kn_1- The standard solution
%invqugé§ \/Z , where A is the discriminant of the quadratic equation, and so the
coordinates of the points of intersection belong to the field K n_1[VA]. (This
will coincide with Kn_1 if. by chance, VAeKn1)
¢ For Case (3), suppose that we have a circle with centre A and radius 7 and a
circle with centre B with radius s, where 7,8 € Kn—1. With the same notation
as before, we must solve the simultaneous equations

AV S e (m-a) tly-a) =T

-

By subtraction we obtain a linear equation (in fact the equation of the chord
connecting the points of intersection of the circles) and so we have reduced this
case to Case (2)- .

\( &
The conclusion is that the elements in K, are either in K, or in
Kn-l[-/Z] for some A in K,_. Hence, for some k20, 7~ e

!/\:u g ) .rw}“::f‘lﬁ)‘/(

Kn:Kn—l(\/Zl,\/Z2,.4.,\/Zk)\ A ))

LN o
and so [Kn : K, _1] is a power of 2

In the light of this theorem, we now consider the three classical problerns
mentioned at the beginning of the chapter.

Duplicating the Cube

If (without loss of generality) we suppose that the original cube has side of
length 1, we must extend the field Q, using the construction rules, to a field K
containing an element o such that o? = 2. The polynomial X*®—2 is irreducible,
by the Eisenstein criterion (Theorem 2.27), and so [Qla] : Q] = 3. Henee
[K:Q]is divisible by 3, and this is impossible, by Theorem 4.8.

visecting the Angle
1t is straightforward (see Exercise 4.2) to give a ruler and compasses constrie-
tion for the bisection of a given angle. Trisection is a different story. Suppose

N RNy

(-l + (y ) = % o~

e -4

\‘/\
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that we have an angle 30, which is “known”, in the sense i1
cosine. Suppose that cos 36 = ¢. We need to construct the nu:,

cos 30 = 4cos® 9 —3cosb,

and so we need to find a root « of the équation 4X3—3X —c = ¢. 1. - .

30 = m/2, so that ¢'= 0, then the polynomial factorises as X {4

[Qle] : Q] = [Q[v3] : Q] = 2. In this case (see Exercise 4.4) -

a trisector. On the other hand, if 30 = /3, so that ¢ =-

looking at the polynomial f(X) = 8X3 — 6X — 1. It factoric. . . {
9(X) = f(X/2) = X3 — 3X — 1 factorises. If 9(X) factorisc:. - i
factorises over Z, by Gauss’s lemma (Theorem 2.24). One of : it
be linear, and must be either X — 1 or X + 1. (See Example 2.2 i
g(1) =-3#0and g(-1) =1 £ 0, and so g(X), and hence f(X). . .. ‘.
Thus [Q[a] ; Q] =3, and so no ruler and compasses construction is jro o«

Squaring the Circle
Suppose that we have a circle of radius 1. Its area is T, and co the »1o 7 e
challenge is to construct the number /7. Now, as mentioned ¢
ber 7 is transcendental, and since Q(r) C Q(+/7), the degrec 14+
certainly infinite. It is certainly not a power of 2, and so the copni
not possible.

&

This last very brief proof is of course in danger of concealing 1.+ 7 e e,
which is the transcendentality of . The proof of this (see [1]) v v ST
and would take us beyond the scope of this book. Suffice it to -.: - i

demann’s proof of 1882 was one of the major achievements of 1Yth-century
mathematics.

We shall return to ruler and compasses constructions in Chapict

EXERCISES

4.3. Examine the field extensions involved in the constr
sector of an angle.

4.4. Describe ruler and compasses constructions for the abzg, chy gk

/6. TR Sewems

B
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4.1 Ruler and Compasses Constructions

-

~

Undoubtedly one of the early triumphs of abstract algebra was the light it shed
on some classical problems of Greek mathematics, the most significant of which
was referred to as “squaring the circle”. This is one of very few phrases from
cerious mathematics to have entered the language, though a (totally unscien-
tific) poll of non-mathematical friends suggests that its mathematical meaning
is not even remotely understood. “Something to do with 772, is it?” is a com-
mon answer, and indeed that is correct, but it does not get to the heart of the
matter.

Let us begin with some examples of ruler and compasses constructions.
(By a ruler here we mean a straight-edge without length markings.)

Example 4.1 . v . S
SAASE e S Az A Voas L2Lnry
Let A, B be distinct points on the plane. Construct the perpendicular bisector
of AB. o
AN D o "d:'
{ >
~2°

)
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Solution

{ P p r A2
& Draw the circle with centre A passing through B, and the circle -

R .

¢ B
4 passing through A. The two circlds meet in points P and Q, and s i g
. 7‘7 is the required perpendicular bisector. 3
J
Example 4.2
Let A, B be distinct points on t$he plane, and Jet C be a point e - e e
segment AB. Dtaw a line through C perpe‘fl‘a";ular to AB. (In * =+ i3
formal geometry was taught in schools, this was called dropping a perpen-
dicular frona'C on to AB.)
Solution
C
A P B /0
(v) \ JJ; > e s V\‘:‘\ 5 0 4
Draw a circle with centre C meeting the line AB in points P audt & Tenas-
in Example 4.1, draw the perpendicular bisector of PQ. _ ]
e e -
37 Remark 4.3 _
NS A

This construction works just as well if C lies on the line AB.

AT N5 daz 5 O <

AR




