Coding Theory

Sheet 3

Spring 2014

- 1. Write out addition and multiplication tables for \mathbf{F}_4 .
- 2. Which elements are primitive in each of the four fields \mathbf{F}_5 , \mathbf{F}_7 , \mathbf{F}_{13} , \mathbf{F}_{17} in Question 10 on Sheet 2?
- 3. In \mathbf{F}_q , $q = p^h$, with p prime, show that

$$(x+y)^p = x^p + y^p.$$

- 4. Find all monic irreducible quadratics in $\mathbf{F}_3[X]$. Which ones are primitive?
 - (i) Use a primitive quadratic with root σ to write the non-zero elements of \mathbf{F}_9 both in the form $a_0 + a_1 \sigma$, with $a_0, a_1 \in \mathbf{F}_3$, and in the form σ^i , with $0 \le i \le 7$; find the order of each element.
 - (ii) Use a non-primitive quadratic with root τ to write the non-zero elements of \mathbf{F}_9 in the form $a_0 + a_1\tau$; find the order of each element.
 - (iii) Find an isomorphism between these two \mathbf{F}_9 's.
- 5. Find all irreducible cubics in $\mathbf{F}_2[X]$. Which ones are primitive?
- 6. Is $X^4 + 1$ irreducible over \mathbf{F}_3 ?
- 7. Find a primitive quartic F in $\mathbf{F}_2[X]$. If $F(\alpha) = 0$, express the powers α^i , for $i = 0, \ldots, 15$, as polynomials in α of degree at most 3.
- 8. If N(m,q) is the number of monic irreducible polynomials of degree m in $\mathbf{F}_q[X]$, show, without using the formula in the lectures, that
 - (i) $N(2,q) = (q^2 q)/2;$ (ii) $N(3,q) = (q^3 q)/3.$
- 9. Are the following valid ISBN-10s: (i) 3 411 02175 6; (ii) 2 85036 008 X?
- 10. In the following ISBN-10, calculate the digit that has been replace by an asterisk: 0.521.283 * 87.
- 11. What is the minimum distance of the ISBN-10 code?
- 12. Is the following a valid ISBN-13:

9780521771948?

- 13. In the following codabar numbers, calculate the digit x:
 - (i) $4539\ 2786\ 4132\ 127x$; (ii) $4929\ x462\ 7341\ 3478$.