Coding Theory

Sheet 8

Spring 2014

- 1. In a binary linear code of length n containing the codeword $z = 11 \cdots 11$, show that the weight distribution (A_0, A_1, \dots, A_n) satisfies $A_i = A_{n-i}$ for $i = 0, 1, \dots, n$.
- 2. In a linear code of length n over \mathbf{F}_q with weight distribution (A_0, A_1, \ldots, A_n) , show that q-1 divides A_i for $i=1,2,\ldots,n$.
- 3. Show that, for any q, the Reed-Solomon codes

$$\mathcal{N}_{q-1}(r,q), \ \mathcal{N}_q(r,q), \ \mathcal{N}_{q+1}(r,q),$$

defined over \mathbf{F}_q , are all MDS.

- 4. Show that the Reed-Solomon code $\mathcal{N}_{q+2}(3,q)$ is MDS for q even but not for q odd.
- 5. † Write out generator matrices for the codes $\mathcal{N}_5(3,5)^{\perp}$ and $\mathcal{N}_5(3,5)$. Reduce each to a standard form [I B] or [B I] and verify that every minor of B is non-zero.
- 6. In an $[n,k]_q$ MDS code C, show that the number of words of minimum weight d=n-k+1 is

$$(q-1)\binom{n}{d}$$
.

(Hint: Given a generator matrix G, put it in standard form and consider the number of words of weight d with 0 in the first k-1 positions.)

- 7. Factorise $X^n + 1$ into irreducible factors over \mathbf{F}_2 for n = 3, 4, 5, 6, 7, 8, 9.
- 8. In $R_7 = \mathbf{F}_2[X]/(X^7 + 1)$, calculate f(X)g(X), where
 - (a) $f(X) = 1 + X^3 + X^6$, q(X) = 1 + X;
 - (b) $f(X) = 1 + X^4 + X^5$, $g(X) = 1 + X^3 + X^4$.
- 9. * Find a generator polynomial and a generator matrix for all binary cyclic codes of lengths 3, 4, 5. In each case, write down d and k.
- 10. Find a generator polynomial and a generator matrix for all ternary cyclic codes of length 5. In each case, write down d and k.

As part of the course assessment, hand in at the School Office a solution to the daggered question, namely 5, if you are doing the BSc course, and to the starred question, namely 9, if you are doing the M-level course, by 2.00 p.m. on Thursday, 3rd April. Solutions to all questions will be placed online on Friday, 4th April.