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1. Physics Laws for The Neutral Atmosphere 

Characterizing the atmosphere by the radio waves are propagated leads to a 
subdivision troposphere and ionosphere. The ionosphere, the upper part of the 
atmosphere, is the dispersive medium (the propagation delay is frequency 
dependent) whereas the troposphere is non-dispersive. The troposphere is also 
referred to as neutral atmosphere. 
In this chapter, the following physical laws and equations are given the gas equation 
(equation of state), hydrostatic equation, and Snell’s law 
 
 
1-1 Equation of state 

Laboratory experiments show that the pressure, volume, and temperature of any 
material can be related by an equation of state over a wide range of conditions. 
All gases are found to follow approximately the same equation of state, which is 
referred to as the ideal gas equation. For most purposes, we may assume that 
atmospheric gases, whether considered individually or as a mixture, obey the ideal 
gas equation exactly. This section considers various forms of the ideal gas equation 
and its application to dry and moist air. 

There are three laws for gases are given: 

• Charles’ constant pressure law: “At constant pressure for a rise in temperature 
of 1degree Celsius, all gases expand by a constant amount, equal to 1/ 273 of 
their volume at 0 degree Celsius”. 

• Charles’ constant volume law: “If the volume is kept constant, all gases 
undergo an increase in pressure equal to 1/ 273 of their pressure at 0 degree 
Celsius”. 

• Boyle’s law: “At constant temperature the product of pressure and volume is 
constant”. 

Based on these laws, the gas equation of state is formulated for perfect gases: 

𝑃𝑉 = 𝑚𝑅𝑇                (1) 

where P, V, m, and T are the pressure (Pa), volume (m3), mass (kg), and 
absolute temperature (in kelvin, K, where K = °C + 273.15) of the gas, respectively, 
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and R is a constant (called the gas constant) for 1 kg of a gas. The value of R depends 
on the particular gas under consideration. Because  𝑚/𝑉 = 𝜌, where 𝜌 is the density 
of the gas, the ideal gas equation may also be written in the form 

𝑃 = 𝜌𝑅𝑇             (2) 
For a unit mass (1 kg) of gas m=1 and we may write (2) as: 

𝑃𝛼 = 𝑅𝑇                  (3) 
where  𝛼 = 1/𝜌 is the specific volume of the gas, i.e., the volume occupied by 1 kg 
of the gas at pressure p and temperature T. 
If the temperature is constant (1) reduces to Boyle’s law, which states if the 
temperature of a fixed mass of gas is held constant, the volume of the gas is inversely 
proportional to its pressure. Changes in the physical state of a body that occur at 
constant temperature are termed isothermal. Also, implicit in (1) are Charles’ two 
laws. The first of these laws states for a fixed mass of gas at constant pressure, the 
volume of the gas is directly proportional to its absolute temperature. The second of 
Charles’ laws states for a fixed mass of gas held within a fixed volume, the pressure 
of the gas is proportional to its absolute temperature. 
We define now a gram-molecular weight or a mole (abbreviated to mol) of any 
substance as the molecular weight, M, of the substance expressed in grams. For 
example, the molecular weight of water is 18.015; therefore, 1 mol of water is 18.015 
g of water. The number of moles n in mass m (in grams) of a substance is given by 

𝑛 =
𝑚
𝑀																				(4) 

Because the masses contained in 1 mol of different substances bear the same ratios 
to each other as the molecular weights of the substances, 1 mol of any substance 
must contain the same number of molecules as 1 mol of any other substance. 
Therefore, the number of molecules in 1 mol of any substance is a universal constant, 
called Avogadro’s number, NA. The value of NA is 6.022×1067 per mole. 
According to Avogadro’s hypothesis, gases containing the same number of 
molecules occupy the same volumes at the same temperature and pressure. It follows 
from this hypothesis that provided we take the same number of molecules of any 
gas, the constant R in (1) will be the same. However, 1 mol of any gas contains the 
same number of molecules as 1 mol of any other gas. Therefore, the constant R in 
(1) for 1 mol is the same for all gases; it is called the universal gas constant (R*). 
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The magnitude of R* is	8.3145	𝐽		𝐾=>	𝑚𝑜𝑙=>. The ideal gas equation for 1 mol of 
any gas can be written as 

𝑃𝑉 = 𝑅∗𝑇                (5) 

and for n moles of any gas as 
𝑃𝑉 = 𝑛𝑅∗𝑇                (6) 

The gas constant for one molecule of any gas is also a universal constant, known as 
Boltzmann’s constant, k. 
Because the gas constant for NA molecules is R*, we have 

𝑘 =
𝑅∗

𝑁D
																								(7) 

Hence, for a gas containing n0 (number density) molecules per unit volume, the ideal 
gas equation is 

                                        𝑃 = 𝑛F𝑘𝑇                   (8) 

If the pressure and specific volume of dry air (i.e., the mixture of gases in air, 
excluding water vapor) are 𝑃G	and	𝛼G, respectively, the ideal gas equation in the 
form of (3) becomes 
                                             𝑃G𝛼G = 𝑅G𝑇                 (9) 

where Rd is the gas constant for 1 kg of dry air. By analogy with (4), we can define 
the apparent molecular weight Md of dry air as the total mass (in grams) of the 
constituent gases in dry air divided by the total number of moles of the constituent 
gases; that is, 

𝑀G =
𝑚HH
𝑚H
𝑀H

H
																	(10) 

where mi and Mi represent the mass (in grams) and molecular weight, respectively, 
of the ith constituent in the mixture. The apparent molecular weight of dry air is 
28.97. Because R* is the gas constant for 1 mol of any substance, or for Md (= 28.97) 
grams of dry air, the gas constant for 1 g of dry air is 	𝑅∗/𝑀G	, and for 1 kg of dry 
air it is 

𝑅G = 1000
𝑅∗

𝑀G
= 1000

8.3145
28.97 = 287.0	𝐽𝐾=>𝐾𝑔=>												 11  

Prove??	
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The ideal gas equation may be applied to the individual gaseous components of air. 
For example, for water vapor (3) becomes 

𝑒𝛼L = 𝑅L𝑇																								(12) 
where e and 𝛼L are, respectively, the pressure and specific volume of water vapor 
and 𝑅L is the gas constant for 1 kg of water vapor. Because the molecular weight of 
water is 𝑀M(= 18.016) and the gas constant for 𝑀M grams of water vapor is R*, we 
have 

𝑅L = 1000
𝑅∗

𝑀M
= 1000

8.3145
18.016 = 461.51	𝐽𝐾=>𝐾𝑔=>												 13  

From (11) and (13), 
𝑅G
𝑅L

=
𝑀M

𝑀G
= 𝜀 = 0.622																					(14) 

Because air is a mixture of gases, it obeys Dalton’s law of partial pressures, which 
states the total pressure exerted by a mixture of gases that do not interact chemically 
is equal to the sum of the partial pressures of the gases. The partial pressure of a gas 
is the pressure it would exert at the same temperature as the mixture if it alone 
occupied all of the volume that the mixture occupies. 
 
Exercise 1: If at 0 °C the density of dry air alone is 1.275	𝑘𝑔	𝑚=7		and the density 
of water vapor alone is 4.770	×	10=7𝑘𝑔	𝑚=7	, what is the total pressure exerted by 
a mixture of the dry air and water vapor at 0 °C? 
Solution: From Dalton’s law of partial pressures, the total pressure exerted by the 
mixture of dry air and water vapor is equal to the sum of their partial pressures. The 
partial pressure exerted by the dry air is, from (9), 

𝑃G =
1
𝛼G
𝑅G𝑇 = 𝜌G𝑅G𝑇 

where 𝜌G is the density of the dry air (1.275	𝑘𝑔	𝑚=7	𝑎𝑡	273	𝐾), 𝑅G is the gas 
constant for 1 kg of dry air (287.0	𝐽	𝐾=>	𝑘𝑔=>), and T is 273.2 K. Therefore, 
 

𝑃G = 9.997×10Q𝑃𝑎 = 999.7	ℎ𝑃𝑎 
Similarly, the partial pressure exerted by the water vapor is, from (12), 

𝑒 =
1
𝛼L
𝑅L𝑇 = 𝜌L𝑅L𝑇 
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where 𝜌L is the density of the water vapor (4.770	×10=7	𝑘𝑔	𝑚=7	𝑎𝑡	273	𝐾), 𝑅L is 
the gas constant for 1 kg of water vapor (461.5	𝐽	𝐾=>	𝑘𝑔=>), and T is 273.2 K. 
Therefore, 

𝑒 = 601.4𝑃𝑎 = 6.014	ℎ𝑃𝑎 
Hence, the total pressure exerted by the mixture of dry air and water vapor is 
(999.7+6.014) hPa or 1006 hPa. 
 
Exercise 2: Determine the apparent molecular weight of the Venusian atmosphere, 
assuming that it consists of 95% of CO2 and 5% N2 by volume. What is the gas 
constant for 1 kg of such an atmosphere? (Atomic weights of C, O, and N are 12, 
16, and 14, respectively.) 
 
Solve?? 
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1-2 Hydrostatic Equilibrium 
 
 The atmosphere’s basic pressure structure is determined by the hydrostatic 
balance of forces. To a good approximation, every air parcel is acted on by three 
forces that are in balance, leading to no net force. Since they are in balance for any 
air parcel, the air can be assumed to be static or moving at a constant velocity 
 

 
 

There are 3 forces that determine hydrostatic balance: 
1. One force is downwards (negative) onto the top of the cuboid from the 

pressure, p, of the fluid above it. It is, from the definition of pressure  
𝐹TUV = −𝑃TUV. 𝐴     (1) 

2. Similarly, the force on the volume element from the pressure of the fluid 
below pushing upwards (positive) is: 

𝐹YUTTUZ = 𝑃YUTTUZ. 𝐴     (2) 
 



Chapter Two:  Physics of Atmosphere 
	

	

7 

3. Finally, the weight of the volume element causes a force downwards. If the 
density is ρ, the volume is V, which is simply the horizontal area A times the 
vertical height, Δz, and g the standard gravity, then: 
 
                𝐹[\]LHT^ = −𝜌𝑉𝑔 = −𝜌𝑔𝐴∆𝑧     (3) 
 
 

By balancing these forces, the total force on the fluid is: 
 
𝐹 = 𝐹YUTTUZ + 𝐹TUV + 𝐹[\]LHT^ = 𝑃YUTTUZ. 𝐴 − 𝑃TUV. 𝐴 − 𝜌𝑔𝐴∆𝑧         (4) 

 
This sum equals zero if the air's velocity is constant or zero. Dividing by A, 
 

0 = 𝑃YUTTUZ − 𝑃TUV − 𝜌𝑔∆𝑧																(5) 
or: 

𝑃TUV − 𝑃YUTTUZ = −𝜌𝑔∆𝑧																				(6) 
 
𝑃TUV − 𝑃YUTTUZ is a change in pressure, and Δz is the height of the volume element 
– a change in the distance above the ground. By saying these changes are 
infinitesimally small, the equation can be written in differential form, where dp is 
top pressure minus bottom pressure just as dz is top altitude minus bottom altitude. 
 

𝑑𝑝 = −𝜌𝑔𝑑𝑧																				(7) 
The result is the equation: 

𝑑𝑝
𝑑𝑧 = −𝜌𝑔																							(8) 

This equation is called the Hydrostatic Equation.  
Using the Ideal Gas Law, we can replace ρ and get the equation for dry air: 

𝑑𝑝
𝑑𝑧 = −𝑔

𝑃
𝑅G𝑇

																							(9) 

or 
𝑑𝑝
𝑝 = −

𝑔
𝑅G𝑇

	𝑑𝑧 = −
𝑀𝑔
𝑅∗𝑇 	𝑑𝑧																(10) 

𝐹[\]LHT^ = −𝑚𝑔	
∴ 𝑚 = 𝜌𝑉	
∴ 𝑉 = 𝐴∆𝑧	

so			𝐹[\]LHT^ = −𝜌𝑔𝐴∆𝑧	

Prove??	
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We could integrate both sides to get the altitude dependence of p, but we can only 
do that if T is constant with height. It is not, but it does not vary by more than about 
±20%. So, doing the integral, 

𝑝 = 𝑝F𝑒
=ef							𝑤ℎ𝑒𝑟𝑒	𝑝F = 𝑠𝑢𝑟𝑓𝑎𝑐𝑒	𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒	𝑎𝑛𝑑			𝐻 =

𝑅∗𝑇
𝑀]H\	𝑔

 

H is called a scale height because when 𝑧	 = 	𝐻, we have 𝑒=>. If we use an average 
T of 250 K, with 𝑀]H\ 	= 	0.029	kg	mole=>, then H = 7.2 km. The pressure at this 
height is about 360 hPa, close to the 300 mb surface that you have seen on the 
weather maps. of course, the forces are not always in hydrostatic balance and the 
pressure depends on temperature, thus the pressure changes from one location to 
another on a constant height surface. 
From the hydrostatic equation, the atmospheric pressure falls off exponentially with 
height, which means that about every 7 km, the atmospheric pressure is about 1/3 
less. At 40 km, the pressure is only a few tenths of a percent of the surface pressure. 
Similarly, the concentration of molecules is only a few tenths of a percent, and since 
molecules scatter sunlight, you can see in the picture below that the scattering is 
much greater near Earth's surface than it is high in the atmosphere. 
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1-3 Snell’s law 

A radio signal passing through the Earth’s atmosphere suffers a change in direction 
owing to refraction. 
If we consider the neutral atmosphere to be horizontally stratified and neglect the 
ionospheric refraction, the total bending can be found by repeatly applying Snell’s 
law foe each layer (Smart,1936). 
 

 
 

Snell’s law states: 

𝑛Ht> sin 𝑧Ht> = 𝑛H sin 𝑧H = 𝑛H sin𝜓H                (1) 

where 𝑧H and  𝑧Ht>  are the zenith angle of the arriving radio signal in the layer i and 
are the corresponding refractive indexes. 

𝑛F sin 𝑧F = 𝑛Z sin 𝑧Z 																																	(2) 
where the index 𝑛F denotes the lowest layer and the index  𝑛Zdenotes the highest layer, 
when the refractive index reduces to 1. The formula (2) will be: 

𝑛F sin 𝑧F = sin 𝑧Z 																											(3) 

This formula (3) holds for any refractivity profile. 
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For a spherical Earth, we may formulate Snell’s law in spherical coordinates.  
 

 
 

Application of sine rule in the triangle 𝑀𝑃H𝑃Ht> for this figure gives: 
𝑟H

sin𝜓H
=

𝑟Ht>
sin(π − 𝑧H)

=
𝑟Ht>
sin 𝑧H

																								(4) 

 
where 𝑟H	and 𝑟Ht> are the distance 𝑀𝑃H		𝑎𝑛𝑑	𝑀𝑃Ht>		𝑤𝑖𝑡ℎ	𝑀 two center of mass of 
the Earth. Combining Eq. (1) and (4) gives Snell's law in spherical coordinates: 
 

𝑛Ht>	𝑟Ht> sin 𝑧Ht> = 𝑛H 𝑟H	sin 𝑧H = 𝑛F 𝑟F	sin 𝑧F                (5) 

or simply 
 

𝑛F sin 𝑧F = sin 𝑧Z 																											(6) 
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1-4 Virtual Temperature 
 

Moist air has a smaller apparent molecular weight than dry air. Therefore, it follows 
from (eq. 13 in page 4) 
 

𝑅L = 1000
𝑅∗

𝑀M
= 1000

8.3145
18.016 = 461.51	𝐽𝐾=>𝐾𝑔=>												 13  

 
that the gas constant for 1 kg of moist air is larger than that for 1 kg of dry air. 
However, rather than use a gas constant for moist air, the exact value of which would 
depend on the amount of water vapor in the air (which varies considerably), it is 
convenient to retain the gas constant for dry air and use a fictitious temperature 
(called the virtual temperature) in the ideal gas equation. We can derive an 
expression for the virtual temperature in the following way. 
Consider a volume V of moist air at temperature T and total pressure p that contains 
mass md of dry air and mass mv of water vapor. The density   of the moist air is 
given by 

𝜌 =
𝑚G + 𝑚L

𝑉 = 𝜌G{ + 𝜌L{  

 
where 𝜌G{  is the density that the same mass of dry air would have if it alone occupied 
all of the volume V and 𝜌L{ 	is the density that the same mass of water vapor would 
have if it alone occupied all of the volume V. We may call these partial densities. 
Because 𝜌 = 𝜌G{ + 𝜌L{  , it might appear that the density of moist air is greater than 
that of dry air. However, this is not the case because the partial density 𝜌L{  is less 
than the true density of dry air. Applying the ideal gas equation in the form of (eq. 2 
in page 2, 𝑃 = 𝜌𝑅𝑇) to the water vapor and dry air in turn, we have 

𝑒 = 𝜌L{ 𝑅L𝑇 
and 

𝑃G{ = 𝜌G{ 𝑅G𝑇 
where e and 𝑃G{  are the partial pressures exerted by the water vapor and the dry air, 
respectively. Also, from Dalton’s law of partial pressures, 

𝑃 = 𝑃G{ + 𝑒 
Combining the last four equations 
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𝜌 =
𝑝 − 𝑒
𝑅G𝑇

+
𝑒
𝑅L𝑇

 

or 

𝜌 =
𝑃
𝑅G𝑇

	 1 −
𝑒
𝑃 1 − 𝜀 	  

where 𝜀 is defined by (eq.14 in page 4,  |}
|~
= ��

�}
= 𝜀 = 0.622). The last equation 

may be written as 
𝑃 = 𝜌𝑅G𝑇L 

where 

𝑇L =
𝑇

1 − 𝑒
𝑃 1 − 𝜀

 

Tv is called the virtual temperature.  

The great advantage of introducing virtual temperature is that the total pressure and 
total density of the mixture are related by the ideal gas equation with the gas constant 
the same as that for dry air, Rd. The virtual temperature is the temperature that dry 
air must have in order to to have the same density as the moist air at the same 
pressure. Note that the virtual temperature is always greater than the actual 
temperature: 

𝑇L ≥ 𝑇 
Typically, the virtual temperature exceeds the actual temperature by only a few 
degrees. 

Prove??	


