
Data Structures

1

Data structure (collections):

 A collection of data elements whose organization is characterized by accessing operation that are

used to store and retrieve the individual are elements.

A data structures is a scheme for organizing data in the memory of a computer.

Algorithm:- Is a finite set of instructions which, if followed, accomplish a particular task. In our

course, it is not enough to specify the form of data structure, but we must give also the algorithm of

operation to access these data structures. Any algorithm must satisfy the following criteria.

1- Input.

2- Output.

3- Definiteness.

4- Finiteness.

5- Effectiveness.

Software Life cycle:

1- Analysis

2- Design

3- Coding

4- Testing

5- Debugging

How to choose the suitable data structure

 For each set of, data there are different methods to organize these data in a particular data structure.

To choose the suitable data structure, we must use the following criteria.

1- Data size and the required memory.

2- The dynamic nature of the data.

3- The required time to obtain any data element from the data structure.

4- The programming approach and the algorithm that will be used to manipulate these.

Built – In Data Structures

Programming language usually provide some data structures that are built into the language, for

instance, C and C++ , C# provide structures and arrays of various dimensions.

Data Structures

2

Arrays in C#

 The array is the most common data structure, present in nearly all programming languages. Using

an array in C# involves creating an array object of System.Array type, the abstract base type for all

arrays. The Array class provides a set of methods for performing tasks such as sorting and searching

that programmers had to build by hand in the past.

Arrays are indexed collections of data. The data can be of either a built-in type or a user-defined type.

In fact, it is probably the simplest just to say that array data are objects. Arrays in C# are actually

objects themselves because they derive from the System. Array class.

Representation One – Dimensional Arrays in the memory

 A one dimensional array can be implemented easily the C# declaration:

int [] a = new int [10];
 a

 index data

0

1

2

-

-

-

9

15

9

30

Reserves 10 successive memory locations , each large enough to Conation single integer

The address of the first location is called the base address of the array a and is denoted

by base (a) . Suppose that the Size of each individual element of the array is esize. Then

reference to the element a[0] is to the element at location base(a), reference to a[1] is to

the element at base (a) + 1*esize , reference to a[2] is the element base (b) +2*esize

In general , reference to a [i] is to the element location base (a) +i*esize.

Example

If we have array declared as :

 int [] a = new int [10];

So the address of a [0] is base (a) , let us suppose that each element of the array requires a single unit

of storage ,so esize = 1 Then the location of a [i] can be computed by :

 address of a[i] = base [a] + i *esize

Data Structures

3

suppose base (a) =500

location of a[2] =500 + 2*1

 =502

Representation Two – Dimensional Arrays in the memory

A two dimensional array can be implemented easily the C# declaration:

int [,] a = new int [3,4];

An element of two dimensional array is accessed by specifying two indices : a raw number and

column number . The number of rows or Columns is called the range of the dimension .

 Although it is convenient for the programmer to think of the elements of a two dimensional

array as being organized in a two dimensional table , the hardware of most Computers has no

Such Localities . As array must be stored in the memory of a computer , and the memory is

usually linear.

And let we suppose that, for an array are, base (a) is the address of the first element of the

array. That is, if a is declared by

int [,] a = new int [M,N];

Where M and N are the range of the first and the second dimension, base (a) is the address of a[0,0]

.We also assume that esize is the size of each element in the array. Let us calculate the address of an

arbitrary element a[i,j]

the address of a[i,j] = base (a) + (N * i +j)*esize // Row wise method

the address of a[i,j] = base (a) + (M*j +i)*esize // Column wise method

Example
If we have array declared as :

int [,] a = new int [M,N];

So , M= 3 and N =4 and the address of a [0,0] is base (a) , let us suppose that each element of

the array requires a single unit of storage ,so seize = 1 Then the location of a [2,1] can be

computed using by row wise method: suppose base(a) = 500

Data Structures

4

location (a[2,1]) = base [a] + (N*i+j) *esize

 = 500 + (4*2+1) *1

 = 509

Multidimensional arrays

 C# also allows arrays with more than two dimension ,for example ,a three dimensional array

int [, ,] a= new int [M,N,R];

the address of a[i,j,k] = base (a) + (M*N * k +N*i+j)*esize . // Row wise method

the address of a[i,j,k] = base (a) + (M*N*k +M*j+i)*esize . // Column wise method

Example ,a four dimensional array

int [, , ,] a= new int [M,N,R,P];

the address of a[i,j,k,l] = base (a) + (M*N *R * l +M*N*k +N*i+j)*esize . // Row wise method

the address of a[i,j,k,l] = base (a) + (M*N*R*l + M*N*k +M*j+i)*esize . // Column wise method

Data Structures

5

Exercises

Q1: What do you mean by data structure ? explain that in detail

Q2: Let int [] a = new int [50]

 What is the address of the element a[34] if the base address (BA = 300) and suppose that each

element of the array requires a single unit of storage (esize = 1)

Q3: Let int [,] a = new int [5,7]

 What is the address of the element a[2,5] if the base address (BA = 100) and suppose that each

element of the array requires a two unit of storage (esize = 2)

Q4: Let char [, ,] a = new char [5,7,4]

 What is the address of the element a[3,2,1] if the base address (BA = 200) and suppose that each

element of the array requires a one unit of storage (esize = 1)

Q5: Let char [, ,] a = new char [4,8,5]

 What is the address of the element a[2,6,3] if the base address (BA = 100) and suppose that each

element of the array requires a one unit of storage (esize = 1)

Q6: Assume that each element of an array a stored in row major order occupies four units of

storage(esize=4). If a is declared by each of the following , and the address of the first element of a

is 100 (base address = 100), find the address of the indicated array element:

a. int a[] = new int[100] ; address of a[10]

b. int a[] = new int[200] ; address of a[100]

c. int a[,] = new int[10,20] ; address of a[0,0]

d. int a[,] = new int[10,20] ; address of a[2,1]

e. int a[,] = new int[10,20] ; address of a[5,1]

f. int a[,] = new int[10,20] ; address of a[0,9]

Data Structures

6

Implementation of Data Structure into Computer Memory

 Static Dynamic

 (Array based) Pointer (linked based)

Arrays

• A sequence of n items of the same data type that are stored contiguously in computer

memory and made accessible by specifying a value of the array’s index.

Linked List

• A sequence of zero or more nodes each containing two kinds of information: some data

and one or more links called pointers to other nodes of the linked list.

• Singly linked list (next pointer)

• Doubly linked list (next + previous pointer)

Type of Data Structures

 Linear structure Non-Linear structure

 Graphs

 Non- linked structures Linked structures

 Stack Linked stack Directed Graphs Undirected graph

 Queue linked queue Tree Structure

 Circular Queue linked list

 List

Data Structures

7

Algorithm Analysis (Big O)

Complexity

In examining algorithm efficiency we must understand the idea of complexity

a. Space complexity

b. Time Complexity

a- Space Complexity

 When memory was expensive we focused on making programs as space efficient as

possible and developed schemes to make memory appear larger than it really was (virtual

memory and memory paging schemes)

 Space complexity is still important in the field of embedded computing (hand held

computer based equipment like cell phones, palm devices, etc)

b- Time Complexity

 Is the algorithm “fast enough” for my needs

 How much longer will the algorithm take if I increase the amount of data it must process

 Given a set of algorithms that accomplish the same thing, which is the right one to choose

Big Oh (asymptotic analysis)

 associates n, the problem size, with t, the processing time required to solve the

problem

Cases to examine

 Best case

 if the algorithm is executed, the fewest number of instructions are executed

 Average case

 executing the algorithm produces path lengths that will on average be the same

 Worst case

executing the algorithm produces path lengths that are always a maximum

Data Structures

8

Frequency Count

 examine a piece of code and predict the number of instructions to be executed

 e.g. for each instruction predict how many times each will be encountered as the code

 inst Code F.C.

 1 for (int i=0; i< n ; i++) n+1

 {

 2 s = s + i; n

 } 2n+1

 In the previous example:

best_case = avg_case = worst_case

 To convert F.C. to order of magnitude:

 discard constant terms

 disregard coefficients

 pick the most significant term

 Worst case path through algorithm ->

 order of magnitude will be Big O (i.e. O(n))

Another example

 Inst Code F.C. F.C

 1 for (int i=0; i< n ; i++) n+1 n+1

 2 for int j=0 ; j < n; j++) n(n+1) n2+n

 {

 3 p = p + i *j ; n*n n2

 } 2n2+2n+1

discarding constant terms produces : 2n2+2n

clearing coefficients : n2+n

picking the most significant term: n2

 Big O = O(n2)

Data Structures

9

Common growth rates

Ex: Power function

double IterPow (double X, int N) {

 double Result = 1; 1

 while (N > 0) { n+1

 Result *= X; n

 N--; n

 }

 return Result; 1

}

Total instruction count: 3n+3

algorithm's computing time (t) as a function of n is: 3n + 3

t is on the order of f(n) - O[f(n)]

O[3n + 3] is n

Data Structures

11

Common big O

 constant O(1)

 logarithmic O(log2 N)

 linear O(N)

 n log n O(N log2 N)

 quadratic O(N2)

 cubic O(N3)

 exponential O(2N)

Abstract Data Type

Abstract Data Type (ADT): a definition for a data type solely in terms of a set of values and a set

of operations on that data type.

 Each ADT operation is defined by its inputs and outputs. Each operation associated with the ADT

is implemented by one or more subroutines in the implementation.

Ex : Design abstract data type to find the area of Circle?

1-Design

Circle

- radius:double

+ Circle (double)

+ Area():double

ADT : Circle

 {

 Data: a non zero positive real number representing the radius

 Operations:

 A constructor(Circle) :initialize the data to some (default) Data object

 certain value.

 Area :

 Input: radius

 Process : compute the area of a circle using the following rule:

 Area= radius2*π

 Output: the area of circle

End ADT Circle

Data Structures

11

Ex2 Design abstract data type to read two integer numbers and find the largest number

1-Design

MaxNumber

- number1:int

-number2:int

+ MaxNumber (int,int)

+ FindMax ():integer

ADT : MaxNumber

 {

 Data: two integer number numbers representing number1 and number2

 Operations:

 A constructor(MaxNumber) :initialize the data to some (default) Data object certain

value.

 FindMax :

 Input: two numbers

 Process : find the maximum number :

 If number1 > number2 then

 return number1

 else

 return number2

 Output: the maximum number

End ADT MaxNumber

Example : Design abstract data type to create array table of 9 integer numbers , and search the value

element in array and print index of numbers?

1-Design

Search1

 - table: int[]

 -element:int

 -size: int

+ Search1 (int,int)

+ ReadArr():void

+searchele():void

ADT : Search1

 {

 Data: create array table of 9 integer numbers

 Operations:

A constructor(Search1) :initialize the data to some (default) Data object certain value.

 Search1 :

 Input: array table of 9 integer numbers and value element.

 Process : search the value element in array and print index of numbers

 Output: index of search number or print not found

End ADT Search1

Data Structures

12

H.W (using ADT)

1 Design abstract data type to create array table of 9 real numbers , and insert element In the array.

2- Design abstract data type to create array table of 9 real numbers , and delete the element In the

array.

2- Design abstract data type to create array table of 9 real numbers , and sort element in array ?

Data Structures

13

Stack

 A stack is an ordered collection of items into which new items may be inserted and from which items

may be deleted at one end, called the top of the stack.

The definition of the stack provides for the insertion and deletion of items, so that a stack is a dynamic

constantly changing object. The definition specifies that a single end of the stack is designated as the

stack top. New items may be put on top of the stack, or items which are at the top of the stack may be

removed.

In the figure below, F is physically higher on the page then all the other items in the stack, so F is the

current top element of the stack, If any new items are added to the stack they are placed on top of F,

and if any items are deleted, F is the first to be deleted. This mechanism is called Last – In – First –

Out. (LIFO)

F

E

D

C

B

A

Operations on a stack

 The two main operations which can be applied to a stack are given spatial names, when an item is

added to a stack, it is push onto the stack, and when an item is removed, it is pop from the stack.

 Given a stack s, and an item i, performing the operation Push (i) adds the item i to the top of stack

s. similarity, the operation pop() removes the top element and returns i as a function value.

Data Structures

14

E

 D D D F

C C C C C C

B B B B B B B

A A A A A A A

Stack s Push(C) Push(D) Push(E) POP() POP() Push(F)

The original idea of the stack is that there is no upper limit on the number of items that may be kept

in a stack. Pushing another item onto a stack produces a larger collection of items. When the stack

been implemented in a program represented as an array, therefore we need to give the maximum size

of this stack to be filled . So, we need as operation called IsFull () (which determines whether or not

a stack is full (overflow) to be applied before Push operation). On the other hand, if a stack contains

a single item and the stack is poped, the resulting stack contains no item and is called an Empty stack.

Therefore, before applying the pop operator to a stack, we must ensure that a stack is not empty. The

operation IsEmpty () determine whether or not a stack is empty.

Another operation that can be performed on a stack is to determine what the top item on a stack is

without removing it. This operation is written Peek () and return the top element of stack s.

i= Peek ();

The Stack Abstract Data Type

Class specification :

Stack

-top:int

- StackSize:int

- items:object[];

+Stack(int)

+Push (object):void

+Pop():object

+Peek():object

+IsFull():bool

+IsEmpty():bool

+Size():int

Data Structures

15

A stack Stack is an abstract data type (ADT) that supports the following three methods

ADT : Stack

 {

 Data: a non zero positive integer number representing StackSize and integer number representing

the top of stack , and array of object elements represent the items .

 Operations:

 A constructor(Stack) :initialize the data to some Data object certain value.

 Push(element) : insert object element at the top of the stack.

 Input: object; Output: None.

 Pop() : Remove from the stack and return the top object on the stack; an error occurs if the stack

is empty .

 Input: None ; Output: Object;

 Peek() : Return the top object on the stack; without removing it; an error occurs if the stack is

empty .

 Input: None ; Output: Object;

Additionally, let us also define the following supporting methods :

 IsEmpty() : Return a Boolean indicating if the stack is empty .

 Input: None; Output : Boolean.

 IsFull() : Return a Boolean indicating if the stack is full .

 Input: None; Output : Boolean.

 Size(): return the number of objects in the stack .

 Input : None; Output: integer;

End ADT Stack

Data Structures

16

 class Stack

 {

// data member or data value

 private int top , StackSize;

 private object[] items;

// operations

// Constructer or default Constructer

 public stack(int n)

 {

 StackSize = n;

 items = new object[StackSize];

 top = -1;

 }

The pseudocode IsEmpty () is used to test whether a stack is empty, may be written as follow:

 if (top equal -1) return true

 else

 return false

The pseudocode IsFull () that is used to test whether a stack is full, may be written as fellow:

 if (top equal StackSize - 1) return true

 else

 return false;

Data Structures

17

The Algorithm Push () is used to add a new elements to the top of the stack. This Algorithm must

perform the following operations:

1- If the stack is full, print a warning message and halt execution.

2- Add a new element into the top of the stack.

The pseudocode Push that may be written as follow:

 if (IsFull())

 print ("Stack is full!")

 else

 {

 top←top+1

 items[top] ← element

 }

The Algorithm Pop that is used to remove the element on the top of the stack, must perform the

following three actions:

1- If the stack is empty, print a warning message and halt execution.

2- Remove the top element from the stack.

3- Return this element to the calling program.

The pseudocode Pop that may be written as fellow:

 if (IsEmpty())

 print "Stack is empty!"

 else

 {

 ele←items[top]

 top← top-1

 }

Data Structures

18

The Algorithm Peek which returns the top element of a stack without removing it from the stack,

must perform the following Two actions:

1- If the stack is empty, print a warning message and halt execution.

2- Return the top element from the stack to the calling program.

The pseudocode Peek may be written as follows:

 if (IsEmpty())

 print "Stack is empty!"

 else

 ele ← items[top]

The pseudocode Size() which returns the number of elements in the stack :

 return top+1;

The pseudocode Display() which Display all elements in the stack

 if (isEmpty())

 print "Stack is empty!"

 else

 {

 for (int i = top; i > -1 ; i--)

 print items[i]

 }

Data Structures

19

The table show the running times of methods in realization of a stack by an array

Method Time

Size O(1)

isEmpty O(1)

isfull O(1)

push O(1)

pop O(1)

peek O(1)

Display O(n)

Applications of stacks

1- Check for balancing of parenthesis.

2- Convert infix expression to postfix.

3- Evaluate postfix expression.

4- Use of Stack in Function calls.

5- Check for palindrome strings

1-Check for balancing of parenthesis.

 A stack is useful here because we know that when a closing symbol such as) is seen , it matches

the most recently seen unclosed (. therefore , by placing an opening symbol on a stack, we can

easily determine whether a closing symbol makes sense. Specifically , we have the following

algorithm .

1- Make an empty stack.

2- Read symbols until the end of the file .

a- If the symbol is an opening symbol , push it onto the stack.

b- If it is a closing symbol, do the following:

i- If the stack is empty , report an error

ii- Otherwise ,pop the stack

- if the symbol popped is not the corresponding opening symbol, report an error

- else we continue.

 3- At the end of the file , if the stack is not empty , report an error.

Data Structures

21

figure below , shows the state of the stack after reading in parts of the string :

{X+(Y-[a+b])*c}

[

 (((

{ { { { {

{…

push

{x+(

…

Push

{x+(y-

[…

push

{x+(y-

[a+b]…

pop

{x+(y-

[a+b]…

pop

{x+(y-[a+b]*c}

pop

2-Convert infix expression to postfix expression

 Infix, Postfix , and prefix Expressions

 Consider the sum of A and B. we think of applying the operator + to the operands A and B and write

the Sum as A+B . This particular representation is called infix . There are two alternate notations for

expressing the Sum of A and B using the symbols A, B and + . These are

+ A B prefix , A B + postfix

In prefix notation the operator precedes the two operands , in postfix notation the operator follows the

two operands , and in infix notation the operand is between the two operands. The evaluation of the

expression A+B*c, as written in standard infix notation , require Knowledge of which of the two

operations + or * is to be performed first. In the case of + and * we Know that mutilation is to be done

before addition . Thus A+B*c is interpreter As a A+ (B*C) .

For the Same example , if we want need to write the expression as (A+B)*C .Therefore , Infix notation

may require parentheses to specify a decimal or of operations. Using postfix and prefix notation , the

notation, the need for parentheses is eliminated because the operator is placed directly after (before)

the two operands to which it applied .

Data Structures

21

To convent infix expression to postfix forms ,we use the following algorithm :

1- Completely parenthesize the infix expression with order of priority.

2- Move each operator to the space hold by its corresponding right parenthesis.

3- Remove all parentheses.

We can apply this algorithm to the expression :

A / B*C + D*E – A*C

((((A / B) * C) + (D*E)) – (A * C))

AB/C* DE*+AC*-

The conversion algorithm for infix to prefix specify that , after compactly parenthesizing the infix

expression with order of priority , we move each operator to its corresponding left parenthesis .

And after that , delimiting all parentheses For example :-

A / B*C + D*E – A*C

((((A / B) * C) + (D*E)) – (A * C))

 -+ * /ABC*DE*AC

In the above example , we have consider four binary operations : addition , subtraction , multiplication

and division. The available in C# and are dented by the usual operators + ,- , *. / .The following is

the order of precedence (highest to lowest) :

Multiplication / division / And

Addition / Subtraction /OR

-Convert infix expression to postfix expression uses one stack

To correct an infix expression to postfix for, we will use an algorithm that uses one stack The

description of the algorithm is as follows:

 1-Read the character from the infix expression until the end of the file.

 2- Test the character.:

 - If the character is an operand, add it to the postfix string.

 - If the character is an left parenthesis , push it to the stack1.

 - If the character is a right parenthesis then pop entries from the stack add them to the postfix

string until a left parenthesis is poped. Discovered both left and right parenthesis.

Data Structures

22

 - If the character is a #(end of the expression) , pop all entries that remain in the stack add

them to postfix string.

 - Otherwise, pop from the stack and add to postfix the operator that have stack priority greater

than or equal to the infix priority of the read character, then push the read character to the opstack.

 Example

Convert the following infix expression to postfix using one stack:

A + (B /C) #

Ch Opstack Postfix (output string) Commentary

A A Add ch to postfix

+ + A Push ch to opstack

(+(A Push ch to opstack

B +(AB Add ch to postfix

/ +(/ AB Push ch to opstack

C +(/ ABC Add ch to postfix

) + ABC/ Pop and add to postfix until (

is reached.

or end of

expression

 ABC/+ Pop and add to postfix until

the opstack is empty.

Example

Convert the following infix expression to postfix using one stack;

((A – (B + C)) * D) / (E +F) #

Data Structures

23

Ch Opstack Postfix (Output string) Commentary

(

 (

 Push ch to opstack

(

((

 Push ch to opstack

A

 ((

A

Add ch to postfix

_

((-

A Push ch to opstack

(

((- (

A

Push ch to opstack

B

((- (

AB Add ch to postfix

+

((- (+

AB

Push ch to opstack

C

((- (+

ABC Add ch to postfix

)

((-

ABC+ Pop and add to postfix until (is reached

)

(

ABC+- Pop and add to postfix until (is reached

*

(*

ABC+- Push ch to opstack

D (* A B C + -D Add ch to postfix

)

(* ABC+ - D* Pop and add to postfix until (is reached

/

/ A B C +-D * Push ch to opstack

(

 /(

A B C + -D *

Push ch to opstack

E

/ (

A B C+-D*E

Add ch to postfix

+

/ (+

ABC+-D*E Push ch to opstack

F / (+

ABC+-D*E F Add ch to postfix

)

/

A B C + - D * E F + Pop and add to postfix until (is reached

or end of

expression

 A B C + - D * E F +/ Pop and add to postfix until the opstack is

empty.

Data Structures

24

-Convert infix expression to postfix expression using two stacks

 To correct an infix expression to postfix for, we will use an algorithm that using two stacks The

description of the algorithm is as follows:

 1-Read the character from the infix expression until the end of the file.

 2-Test the character.

 - If the character is an operand, push it to the stack1.

 - If the character is an left parenthesis , push it to the stack2.

 - If the character is a right parenthesis then pop entries from the stack2 and push them to the

stack1 until a left parenthesis is poped. Discovered both left and right parenthesis.

 - If the character is a #(end of the expression) , pop all entries that remain in the stack2 and push

them to stack1.

 - Otherwise, pop from the stack2 and push to stack1 the operator that have stack priority greater

than or equal to the infix priority of the read character, then push the read character to the stack2.

Example

Convert the following infix expression to postfix using two stack: a-b*(c+d)/(e-f) #

Ch Stack2 Stack1 Commentary

a a Push ch to stack1

- - a Push ch to stack2

b - ab Push ch to stack1

* -* ab Push ch to stack2

(-*(ab Push ch to stack2

c -*(abc Push ch to stack1

+ -*(+ abc Push ch to stack2

Data Structures

25

d -*(+ Abcd Push ch to stack1

) -* abcd+ Pop ch from stack2 and push them into stack1 until (is

reached.

/ -/ abcd+* Push ch to stack2

(-/(abcd+* Push ch to stack2

e -/(abcd+*e Push ch to stack1

- -/(- abcd+*e Push ch to stack2

f -/(- abcd+* ef Push ch to stack1

) -/ abcd+*ef- Pop ch from stack2 and push them into stack1 until (is

reached.

or end of

expression

 abcd+*ef-/- Pop ch from stack2 and push them into stack1 until the

stack2 is empty.

3-Evaluate postfix expression(complier)

 We consider evaluating postfix expression using one stack . we will use an algorithm that using

one stack The description of the algorithm is as follows:

 1-Read the character from the postfix expression until the end of the file.

 2-Test the character.

 - If the character is an operand, push the value associational with it onto the stack .

 - If the character is an operator , pop two values from the stack, copy the operator to them, and

 push the result back onto the stack.

As an example , Execute the following postfix notation using one stack:

6 2 3 + - 3 8 2 / + * 2 * 3 +

Data Structures

26

3 8

2 2 5 3 3

6 6 6 6 1 1 1

Read

6

Read 2 Read 3 Read + Read

-

Read

3

Read 8

2

8 4

3 3 7 2 3

1 1 1 7 7 14 14

Read

2

Read / Read + Read * Read

2

Read

*

Read 3

17

Read +

Data Structures

27

Evaluate infix expression (interpreters using two stacks)

Example

Execute the following infix notation using the two stack : 3 + 7 * 2 - 6

Ch Stack1(operatio

n)

Stack2(operand) Commentary

3 3 Push ch to stack2

+ + 3 Push ch to stack1

7 + 7

3

push ch to stack2

* *

+

7

3

Push ch to stack1

2 *

+

2

7

3

push ch to stack2

- +

14

3

Pop stack1 (*)

Pop stack2(2)

Pop stack2 (7)

7*2= 14 push 14 to stack2

 - 17 Pop stack1 (+)

Pop stack2 (14)

Pop stack2 (3)

3+14 = 17 push 17 into

stack2

Push ch to stack1 (-)

6 - 6

17

Push ch to stack2

or end

of

expression

- 11

Pop stack1 (-)

Pop stack2 (6)

Pop stack2 (17)

17-6= 11 push 11 to stack2

Data Structures

28

4-Use of Stack in Function calls

 Whenever a function begins execution, an activation record is created to store the current

environment for that function

 Current environment includes the

o values of its parameters,

o contents of registers,

o the function’s return value,

o local variables

o address of the instruction to which execution is to return when the function finishes

execution (If execution is interrupted by a call to another function)

 Functions may call other functions and thus interrupt their own execution, some data structure

must be used to store these activation records so they can be recovered and the system can be

reset when a function resumes execution.

 It is the fact that the last function interrupted is the first one reactivated

 It suggests that a stack can be used to store these activation records

 A stack is the appropriate structure, and since it is manipulated during execution, it is called

the run-time stack

Consider the following program segment

static void Main(string[] args)

{

 int a=3;

 int s1= f1(a);

}

int f1(int x)

{

 int s =(f2(x+1)) ;

}

int f2(int p)

{

 int q=f3(p/2);

 return 2*q;

}

int f3(int n)

{

 return n*n+1;

}

Data Structures

29

Run-time Stack

Parameters function value local variable return address

 a 3 OS

 OS denotes that when execution of main() is completed, it returns to the operating

system

When a function is called …

 Copy of activation record pushed onto run-time stack

 Arguments copied into parameter spaces

 Control transferred to starting address of body of function

 Function call f2 (x + 1)

top P 4 q B AR for f2()

AR for f1()

AR for main()

x 3 A

 a 3 OS

The output

10

Data Structures

31

5-Check for palindrome strings

We have the following pseudocode.

Make an empty stack1 and stack2.

Initialize palindrome=True

Read symbols and push it into stack1 until the end of the string.

le= Size(); // find the number of item in the stack (top)

Let m= le divided by 2.

For (i=0, i< m ; i++)

{

 pop character from stack1

 push character into stack2

 }

If(m%2 == 1) pop character from stack1

While (!emptystack1 and palindrome)

 {

Pop ch1 from stack1

Pop ch2 from stack2 or if (stack1 equal stack 2)

if(ch1!=ch2) print "the string is palindrome";

palindrome=False else

 } print "the string is not palindrome";

 if(palindrome)

 print "the string is palindrome";

 else

 print"the string is not palindrome;

Data Structures

31

Exercises:

Q1:Let Stack be a stack of size (15) integer numbers , write C# program that push a list of integer

numbers into stack and print this list in reverse order?

Q2: Let S for push an element in the stack, and U for pop element from the stack.If the order of

stack input stream is 1 2 3 4 5

 a- What is the output if we execute the following operations : SSUUSSSUUU

 b- Which of the following permutations can be obtained as output stream (explain the reason for

each case).

i- 51324

ii- 23514

iii- 32154

Q3: If the stack input stream is A B C D E F what is the sequence of operations to get the out put

C B D E F A?

Q4- Write a function to check if the stack St is empty.

Q5- State the main applications of the stack?

Q6– Convert the following infix expressions into postfix notations using two stacks:

i- a + b * 2 / 4 - (c * 5 / 8 – f) +3

ii- a+(((b – c)*(d – e)+ f)/ g) * (h – j)

Q7– Convert the following infix expressions into postfix notations using one stacks:

i- a+b+c*(-d/3+4)- f

ii- (a+b)* (c – d) / e * f

Q8- Execute the following postfix notation using the stack

i- ab*cde*/+ when a=5, b=6,c=8,d=2,e=2

Data Structures

32

ii- abc + * c b a - + * when a = 1 , b= 2 , c= 3

Q9- Execute the following infix notation using the stack

 a +(b+c/2)*4+m When a=10,b=8,c=4,m=20

Q10- Write a method that reads in a string and print its characters in reverse order (note: the string

terminator is a "." . Which should not be printed as a part of the reversed string).

Q11- Consider the following psedocode:

 Declare a stack of characters

 while(there are more characters in the word to read)

 {

 read a character

 if non blank character

 push the character on the stack

 }

 while (the stack is not empty)

 {

 pop a character off the stack

 write the character to the screen

 }

 What is written to the screen for the input "My Test"

