
Chapter 4

Inverse Methods and Retrieval
Techniques

In this chapter we will discuss inverse methods and retrieval techniques using
the example of temperature profile retrieval from the idealized nadir infrared
sounder, introduced in the previous chapter.

4.1 Example: Retrieval of atmospheric tem-

perature profiles

In the idealized example obove, we have seen that the measured brightness
temperature at frequency ν is given by the vertical integral over the atmo-
spheric temperatures, weighted by the weighting functions Kν :

Tb,ν(∞) =

∫ ∞

0

T (z)Kν(z) dz (4.1)

(here we have neglected the surface contribution for simplicity, see the cor-
responding equation above).

To solve this numerically, we will replace the integral by a sum over some
finite layers:

Tb,j(∞) =
∑

i

TiKj,i∆zi. (4.2)

Here Ti is the Temperature at level i, ∆zi is the thickness of layer i, Tb,j(∞) is
the measured brightness temperature at frequency j, andKj,i is the weighting
function at layer i and frequency j.
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42 CHAPTER 4. RETRIEVAL TECHNIQUES

This can be written in more compact matrix notation as

y = K · x, (4.3)

where y is a vector containing the measured brightness temperatures (yj =
Tb,j(∞)), x is a vector containg the atmospheric temperature profile (xi = Ti)
and K is the weighting function matrix (with elements Kj,i∆zi).

This equation thus provides us with a way to calculate the measured
brightness temperature from an atmospheric temperature profile (and is
sometimes called the ‘forward’ equation. In remote sensing we want to go the
oposite way: retrieving the atmospheric temperature profile from the mea-
sured brightness temperature. This can be done by the so-called ‘inversion’
of the forward equation. Naively, this may be done by direct inversion of the
weighting function matrix:

x = K−1 · y. (4.4)

However, not only is the inverse of K only defined if i = j, it is also generally
very sensitive to small errors in y and will not give any meaningfull result.
This is an example of a so called ill-posed problem.

4.2 Introduction to estimation theory

Here we search for a solution of equation

Ax = d (4.5)

where d are our measured data and x is the unknown parameter vector, in
our example the unknown atmospheric temperature profile.

4.2.1 Vectors and matrices

The equation above can be written in components as

di =
∑

j

Aijxj (4.6)

where i = 1, . . . ,m and j = 1, . . . , n. The product of two matrizes is defined
as

AB =
∑

k

AikBkj (4.7)
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Vectors can thus be seen as a special case of an n×1-matrix; in our notation
vectors are column-vectors. Row-vectors (the transpose xT of a column vector
x) are linear forms, i.e. linear maps of a vector onto a scalar.

We define the null space of a matrix (german: Kern der Matrix) A as the
set of all x for which

Ax = 0 (4.8)

The null space itself is a vector space.
We define the rank of a Matrix A as the number of linearly independent

rows of A.
dim(null space(A)) + rank(A) = n (4.9)

If an inverse to A exists, then A is called regular, if not A is singular.
For regular matrices

x = A−1d (4.10)

However, for remote sensing, the weighting function A is almost always sin-
gular or nearly singular, so that we cannot simply invert A.

4.3 The overdetermined case

Let us call the difference between the data d and the linear model Ax with

e = Ax− d (4.11)

We now search for a solution x for which the norm of e is minimum:

|e| =
√
∑

i

e2i =
√
eTe (4.12)

or
|e|2 = eTe (4.13)

|e|2 = (Ax− d)T (Ax− d) (4.14)

= (xTAT − dT )(Ax− d) (4.15)

= xTATAx− xTATd− dTAx+ dTd (4.16)

At the minimum
∂|e|2
∂xk

= 0 (4.17)
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∂|e|2
∂xk

= ITkA
TAx+ xTATAIk − ITkA

Td− dTAIk (4.18)

= ITk (A
TAx−ATd) + (xTATA− dTA)Ik (4.19)

= 2ITk (A
TAx−ATd) (4.20)

Thus the minimum difference between data d and model Ax is at

ATAx−ATd = 0 (4.21)

and thus the so called least squares solution to the equation Ax = d is given
as

x̂ =
(
ATA

)−1
ATd (4.22)

4.3.1 Statistical basics

Consider a random variable x. Individual measurements of x will lead to the
actual value xi. The expectation value E(x) is given by

E(x) ≈ x̄ =
1

N

N∑

i

xi (4.23)

E(x) = lim
N→∞

1

N

N∑

i

xi (4.24)

The covariance between two (scalar) random variables u and v is defined as

σ2
uv = lim

N→∞

1

N

∑

i

(ui − E(u)) (vi − E(v)) (4.25)

= E ((u− E(u)) (v − E(v))) (4.26)

More generally for a random vector x:

σ2
jk(x) = limN→∞

1

N

∑

i

(xij − E(xj)) (xik − E(xk)) (4.27)

The covariances thus for a matrix, the covariance matrix cov(x). The empir-
ical covarainvce matrix kann be calculated as

S2
jk =

1

N − 1

∑

i

(xij − x̄j)(xik − x̄k) (4.28)
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with

x̄j =
1

N

∑

i

xij (4.29)

The empirical correlation coefficient is defined as

rjk =
S2
jk

SjSk

(4.30)

with

Sj =
√

S2
jj (4.31)

Note that constants can be extracted from expectation values, i.e.

E(Ax) = AE(x) (4.32)

It thus follows:
cov(Ax) = Acov(x)AT (4.33)

4.4 Singular value decomposition

Every real m× n matrix A can be written as

A = U · S ·VT (4.34)

with
U an orthogonal m×m matrix
V an orthogonal n× n matrix
S an m× n diagonal matrix with si = Sii > 0 and Sij = 0.
The si are called the singular values of A. The matrices U and V form

an orthonormal basis of the m-dimensional data space and the n-dimensional
parameter space, respectively. Base vectors Vi that belong to vanishing
singular values (si = 0) are in the null space of A. The number of non-zero
singular vectors corresponds to the rank of A.

Let p be the number of non-zero singular values:

A = [U1 . . .UpUp+1 . . .Um]
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A = UpSpV
T
p (4.37)

The singular value decomposition can be used to find the least squares
solution

ATAx̂ = ATd : (4.38)

VpSpU
T
pUpSpV

T
p x̂ = VpSpU

T
p d (4.39)

VpS
2
pV

T
p x̂ = VpSpU

T
p d (4.40)

x̂ = VpS
−1
p UT

p d (4.41)

This is easy to calculate once the singular value decomposition (svd) has
been calculated, because

S−1p =






1/s1
. . .

1/sp




 (4.42)

The matrix VpS
−1
p UT

p is called the pseudo inverse of A.
If a matrix has vanishing singular values (i.e. some si = 0), the matrix is

singular and no inverse exists. However, in many cases the singular values are
not exactly zero, but decrease exponentially; this leads to large numbers in
the calculation of the pseudo inserve with large amplification of measurement
noise. So call ill-posed problems.

To solve this, the ‘method of truncated singular values can be used. For
this, singular values below a certain threshold will be set exactly to zero.
This is one example of a regularization method.

4.5 Tikhonov-Phillips Regularization

So far we have searched for the smallest x̂ (in the sense of a quadratic norm)
that minimizes the difference to the data. However, we may add arbitrary
vectors from the null space to the solution that agree as good with the data.
To make the soilution unique, other conditions or constraints can be consid-
ered.
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We consider the two functionals

A[x] = ||Ax− d||2 (4.43)

and
B[x] = ||Bx− b||2 (4.44)

I.e., we want to solve Ax = d under the additional condition that Bx = b.
One example could be that we require x to be close to some climatology b.
We weight both conditions with some parameter γ and minimize

||Ax− d||2 + γ2||Bx− b||2. (4.45)

This leads to (similar to the derivation of the ordinary least squares solution):

(ATA+ γ2BTB)x̂ = ATd+ γ2BTb (4.46)

or
x̂ = (ATA+ γ2BTB)−1(ATd+ γ2BTb) (4.47)

One common condition is to require x̂ to be close to some a priori value
x0, so that B = I and b = x0. Then:

x̂ = x0 + (ATA+ γ2I)−1AT (d−Ax0) (4.48)

4.6 Optimal Estimation

We look for a solution x̂ that minimizes the functional

(Ax− d)T cov(d)−1(Ax− d) + (x− x0)
T cov(x)−1(x− x0) (4.49)

It follows

x̂ = cov(x)AT (Acov(x)AT + cov(d))−1(d−Ax0) + x0 (4.50)

This is the so called optimal estimation solution.
One way to derive the optimal estimation solution is to start from the

theorem of Gauss-Markov:
Let x and d be random variables with expectation values

E(x) = E(d) = 0 (4.51)
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and given covariance matrices

Rx = E(xxT ) (4.52)

Rxd = E(xdT ) (4.53)

Rd = E(ddT ) (4.54)

The best linear estimator for x is then given as

x̂ = RxdR
−1
d
d (4.55)

The corresponding covariance matrix for the error

e = x̂− x (4.56)

is given by

Re = Rx −RxdR
−1
d
RT

xd (4.57)

Note that if Rd and Rxd are known, e.g. through statistical ananlyses of
external data, a retrieval is possible even without knowledge of the physical
model A.

However, if the physical model is known (in our case the weighting func-
tions) and if we write our retrieval problem as

Ax+ n = d (4.58)

(n the instrument noise) it follows that

x̂ = RxA
T (ARxA

T +Rn)
−1d (4.59)

because if the noise n is uncorrelated

Rxn = E(xnT ) = 0 (4.60)

Rdn = E(dnT ) = 0 (4.61)

E(n) = 0 (4.62)

Rn = E(nnT ) 6= 0 (4.63)
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Rxd = E(xdT ) (4.64)

= E(x(Ax− n)T ) (4.65)

= E(xxTAT − xnT ) (4.66)

= E(xxT )AT − E(xnT ) (4.67)

= RxA
T (4.68)

Rd = E((Ax− n)(Ax− n)T ) (4.69)

= E(AxxTAT −AxnT − nxTAT + nnT ) (4.70)

= ARxA
T +Rn (4.71)

and thus

x̂ = RxA
T (ARxA

T +Rn)
−1d (4.72)

as stated above.

More generally when

E(x) = x0 (4.73)

and

E(d) = E(Ax+ n) (4.74)

= E(Ax) + E(n) (4.75)

= Ax0 (4.76)

the optimal estimation solution can be written as

x̂ = RxA
T (ARxA

T +Rn)
−1(d−Ax0) + x0 (4.77)

Note that for the special case that the covariance matrices Rx and Rn

are diagonal the optimal estimation solution takes the same form as the
Tikhonov-Phillips regularization, with the paramter γ given by the ratio
between Rx and Rn (‘signal to noise ratio).
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4.7 Averaging kernels

The linear retrieval methods we have discussed (truncated singular values,
Tikhonov-Phillis, Optimal Estimation) all can be written in the form

x̂ = x0 +G(d−Ax0) (4.78)

Insert Ax = d:
x̂ = x0 +GA(x− x0) (4.79)

The matrix GA is the so called averaging kernel matrix and relates the true,
but unknown profile x to the retrieval solution x̂. Rearranging the equation
above gives

x̂ = GAx+ (I−GA)x0 (4.80)

This tells us, how the retrieved profile x̂ depends on the true but unknown
profile x and the a priori (or climatological) profile x0. The practical in-
terpretation is, that the retrieval of the remote sensing observations is a
smoothed version of the real profile plus some contribution of the a priori
profile. Inspection of the averaging kernel matrix gives information on the
vertical resolution of the retrieval.
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