Classification of ligands

Depending on the number of sites at which one molecule of a ligand is coordinated to the central metallic atom, the ligands have been classified as mono dentate (or uni dentate) and poly dentate (or multi dentate) ligands.

1- Mono dentate ligands

The ligands which have only one donor atom or are co-ordinated through one electron pair are called mono dentate ligands. Such ligands are coordinated to the central metal ion at one site or by one metal-ligand bond only.

These ligands may be neutral molecules or in anionic form.

(a) Neutral ligands which are named as such.

$(C_2H_5)_3N$		Triethyl amine	$(C_6H_5)_3P$		Triphenyl phosphine
CH ₃ NH ₂	•••	Methyl amine	CH₃CN		Acetonitrile
NH ₂ OH		Hydroxylamine	PF ₃	***	Phosphorus trifluoride
(CH ₃) ₂ NH	***	Dimethylamine	$(C_2H_5)_3P$	***	Triethyl phosphine
C.H.N or py	•••	Pyridine			

(b) Neutral ligands which are given special names, e.g.

CO		•••	Carbonyl	NO	•••	Nitrosyl
CS		•••	Thiocarbonyl	NS	•••	Thionitrosyl
H ₂ O	16	•••	Aquo or aqua	NH ₃	***	Ammine

According to latest system of nomenclature, the word "aqua" is used for H2O molecule.

2018/2019

Coordination Chemistry

Dr. Asia Hameed

Anionic (negative) ligands. The names of negative ligands end in o

F Fluoro Cl Chloro

Br Bromo I Iodo

H Hydro or Hydrido CH₃COO Acetato

NH₂ Amido OH Hydroxo or hydroxyl

 N^{3-} Nitrido N_3^{-} Azido

O² Oxo HS Mercapto

S² Sulphido or thio CN Cyano(coordination

through C-atom)

NC Iso-cyano(coordination CH₃O Methoxo

through N-atom)

 $C_2H_5O^2$ Ethoxo NO_2^2 Nitro (coordination

through N-atom)

ONO Nitrito (coordination SCN Thiocyanato

Through O-atom)

NCS Iso-thiocyanato

2- Poly-dentate ligands

These may be bi-dentate, tri-dentate, tetra-dentate, penta-dentate and hexa-dentate, if the number of donor atoms present in one molecule of the ligand attached with the central metallic atom is 2, 3, 4, 5 and 6 respectively.

(one molecule of these ligands makes 2, 3, 4, 5 and 6 metal-ligand coordinated bonds respectively.

Bi-dentate ligands may be neutral molecules or anions.

Examples of bi-dentate ligands

Ethylene diamine (en)
$$CH_2$$
— CH_2
 NH_2 NH_2

Ethylene diphosphine CH_2 — CH_2
 CH_2
 PH_2 PH_3

*2,2-bipyridine (bipy)

*Hydrazine

*o-phenanthroline or 1,10-phenanthroline (0-phen or phen or phenan)

*Acetylacetonato ion (acac)

$$\begin{array}{c|cccc} CH_3-C-CH=C-CH_3 & \xrightarrow{-H^+} & CH_3-C-CH=C-CH_3 \\ \parallel & \mid & \parallel & \mid & \parallel & \mid \\ O & OH & O & :O: \end{array}$$

Mode of attachment of acetylacetanato ion to the metal atom, M.

*Oxalato ion $C_2O_4^{2-}(ox^{2-})$

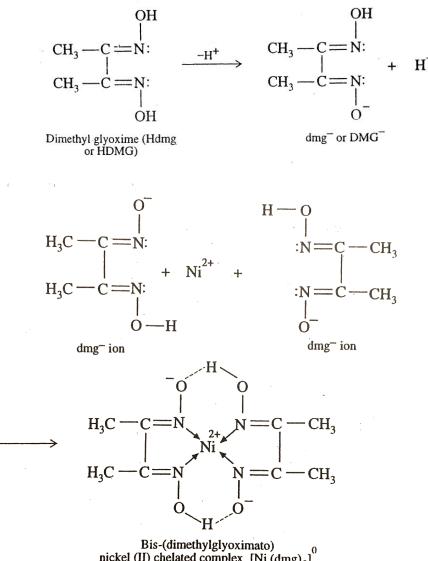
 $[Pt^{2+}(ox)_2]^{2-}$

$$\begin{bmatrix}
O = C - O & O - C = O \\
O = C - O & O - C = O
\end{bmatrix}$$

$$O = C - O & O - C = O$$

$$O = C - O & O - C = O$$

$$O = C - O & O - C = O$$

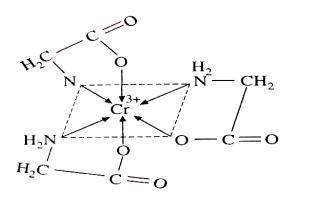

$$O = C - O & O - C = O$$

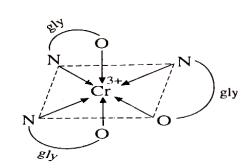
$$O = C - O & O - C = O$$

* 8- hydroxyl quinolinato ion (oxine)

Attachment of oxine ion to a metal atom (M) in complex compounds

*Dimethyl glyoximato ion (dmg or DMG)




 $\begin{array}{c} \text{Bis-(dimethylglyoximato)} \\ \text{nickel (II) chelated complex, [Ni (dmg)_2]}^0 \\ \text{(red ppt.)} \end{array}$

*Glycinato ion (gly)

$$\begin{array}{c} H_2N - CH_2 - C - OH \xrightarrow{-H^+} H_2N - CH_2 - C - O \\ \parallel & \parallel & \parallel \\ O & O \end{array}$$

Glycine molecule (Hgly)

*Carbonato CO_3^{2-} , nitrato NO_3^{-} and sulphato SO_4^{2-}

The structure of these ions and the way in which they are coordinated to the metal atom are shown blow:

OR

$$O = C$$

$$O = M$$

$$O = N$$

$$O =$$

* Peroxo, O₂²-

 O_2^{2-} group gets coordinated to the central metal ion as:

Examples of tridentate ligands

a- Diethylene triamine (dien)

$$H_{2}\ddot{N} - CH_{2} - CH_{2} - \ddot{N}H$$
 $H_{2}\ddot{N} - CH_{2} - CH_{2}$

$$H_2C$$
 M
 CH_2
 H_2C
 N
 CH_2
 H_2C
 N
 CH_2

b- 2,2⁻,2⁻⁻-terpyridine or terpyridyl (terpy)

Example of tetra-dentate ligand

Triethylene tetraamine (trien)

$$\frac{\ddot{N}H_{2}-CH_{2}-CH_{2}-\ddot{N}H-CH_{2}}{\ddot{N}H_{2}-CH_{2}-CH_{2}-\ddot{N}H-CH_{2}}$$

$$H_{2}C \longrightarrow CH_{2}$$
 $H_{2}C \longrightarrow NH$
 $NH \longrightarrow CH_{2}$
 $H_{2}C \longrightarrow N$
 $N \longrightarrow CH_{2}$
 $H_{2}C \longrightarrow N$
 H_{2}
 $H_{2}C \longrightarrow N$
 $N \longrightarrow CH_{2}$

Example of penta-dentate ligand

Tetraethylene pentaamine (tetraen)

$$H_2N - (CH_2)_2 - NH - (CH_2)_2$$
 NH
 $H_2N - (CH_2)_2 - NH - (CH_2)_2$
 NH

$$\begin{array}{c} H_{2} \\ C \\ H_{2}C \\ HN \\ \longrightarrow M \\ H_{2}C \\ C \\ H_{2} \\ \end{array} \begin{array}{c} H_{2} \\ N \\ \longrightarrow M \\ CH_{2} \\ CH_{2} \\ H_{2} \\ \end{array}$$

Example of hexa-dentate ligand

Ethylene diamine tetraacetate ion (edta⁴⁻ or EDTA⁴⁻ or Y⁴⁻)

Bridging Ligand and Bridged Complexes

Although the ligands like OH (hydroxo), NH₂ (amido or amino), NH² (imido), Cl , F , SO_4^{2-} , NO₂ , CO etc. are mono-dentate ligands, they also act as bi-dentate ligands when they attached with two separate metals atoms, making a bridge between them. Such ligands are called bridging ligands and the complexes thus formed are called bridged (or polynuclear ligands or multinuclear) complexes. Each ligand makes two σ -bonds with two metal atoms. A bridging ligand must have at least two lone pairs of electrons which the ligand uses to get coordinated to two metal atoms. The polynuclear complex may be dinuclear, trinuclear, teranuclear etc.

$$\left[(NH_3)_4 Co^{3+} \left\langle \begin{array}{c} OH \\ OH \end{array} \right\rangle Co^{3+} (NH_3)_4 \right] (SO_4)_2$$

$$\begin{bmatrix} NH_{3} & NH_{3} & OH \\ NH_{3} & OH & Co \\ OH & OH & OH \\ NH_{3} & OH \end{bmatrix}^{5+}$$